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ABSTRACT
Automatic query reformulation is a widely utilized technology
for enriching user requirements and enhancing the outcomes of
code search. It can be conceptualized as a machine translation task,
wherein the objective is to rephrase a given query into a more com-
prehensive alternative. While showing promising results, training
such a model typically requires a large parallel corpus of query
pairs (i.e., the original query and a reformulated query) that are
confidential and unpublished by online code search engines. This
restricts its practicality in software development processes. In this
paper, we propose SSQR, a self-supervised query reformulation
method that does not rely on any parallel query corpus. Inspired by
pre-trained models, SSQR treats query reformulation as a masked
language modeling task conducted on an extensive unannotated
corpus of queries. SSQR extends T5 (a sequence-to-sequence model
based on Transformer) with a new pre-training objective named
corrupted query completion (CQC), which randomly masks words
within a complete query and trains T5 to predict the masked con-
tent. Subsequently, for a given query to be reformulated, SSQR
identifies potential locations for expansion and leverages the pre-
trained T5 model to generate appropriate content to fill these gaps.
The selection of expansions is then based on the information gain
associated with each candidate. Evaluation results demonstrate
that SSQR outperforms unsupervised baselines significantly and
achieves competitive performance compared to supervised meth-
ods.
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1 INTRODUCTION
Searching through a vast repository of source code has been an
indispensable activity for developers throughout the software devel-
opment process [49]. The objective of code search is to retrieve and
reuse code snippets from existing projects that align with a devel-
oper’s intent expressed as a natural language query [50]. However,
it has been observed that developers often struggle to articulate
their information needs optimally when submitting queries [13, 28].
This difficulty may arise from factors such as inconsistent termi-
nology used in the query or a limited understanding of the specific
domain in which information is sought. Developers may constantly
reformulate their queries until the queries reflect their real query
intention and retrieve the most relevant code snippets. Studies [8]
have shown that in Stack Overflow, approximately 24.62% of queries
on Stack Overflow have undergone reformulation. Moreover, de-
velopers, on average, reformulate their queries 1.46 times before
selecting a particular result to view.

One common solution to this problem is automatic query refor-
mulation, namely, rephrasing a given query into a more compre-
hensive alternative [18, 32]. A natural first way to accomplish this
objective is to replace words in a query with synonyms based on
external knowledge such as WordNet and thesauri [20, 31, 34, 51].
However, this methodology restricts the expansion to the word
level. Besides, gathering and maintaining domain knowledge is
usually costly. The knowledge base might always lag behind the
fast-growing code corpora. There have been other attempts that
consider pseudo-relevance feedback, i.e., emerging keywords in
the initial search results [19, 22, 43, 53]. They search for an initial
set of results using the original query, select new keywords from
the top k results using TF-IDF weighting, and finally expand the
original query with the emerging keywords. Nevertheless, despite
expanding queries at a word level, this approach also has a risk of
expanding queries with noisy words. Hence, the expanded query
can be semantically irrelevant to the original one.

In recent years, driven by the prevalence of deep learning, re-
searchers seek the idea of casting query reformulation as a machine
translation task: the original query is taken as input to a neural
sequence-to-sequence model and is translated into a more compre-
hensive alternative [8]. Despite showing substantial gains, such
models require to be trained on a large-scale parallel corpus of
query pairs (i.e., the original query and a reformulated query). Un-
fortunately, acquiring large query pairs is infeasible given that
real-world search engines (e.g., Google and Stack Overflow) do not
publicly release the evolution of queries. For example, the state-
of-the-art method SEQUER [8] relies on a confidential parallel
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dataset that cannot (likely to be impossible) be accessed by exter-
nal researchers. Replicating the performance of SEQUER becomes
challenging or even impossible for those who lack access to such
privileged datasets. This lack of replicability hampers the wider
adoption and evaluation of the method by the research community.

In this paper, we present SSQR, a self-supervised query refor-
mulation method that achieves competitive performance to the
state-of-the-art supervised approaches, while not relying on the
availability of parallel query data for supervision. Inspired by the
pre-trained models, SSQR automatically acquires the supervision of
query expansion through self-supervised training on a large-scale
corpus of code comments. Specifically, we design a new pre-training
objective called corrupted query completion (CQC) to simulate the
query expansion process. CQCmasks keywords in long, comprehen-
sive queries and asks the model to predict the missing contents. In
such a way, the trained model is encouraged to expand incomplete
queries with keywords. SSQR leverages T5 [42], the state-of-the-art
language model for code. The methodology of SSQR involves a two-
step process. Firstly, T5 is pre-trained using the CQC objective on a
vast unannotated corpus of queries. This pre-training phase aims to
equip T5 with the ability to predict masked content within queries.
When presented with a query to be reformulated, SSQR enumerates
potential positions within the query that can be expanded. It then
utilizes the pre-trained T5 model to generate appropriate content
to fill these identified positions. Subsequently, SSQR employs an
information gain criterion to select the expansion positions that
contribute the most valuable information to the original query,
resulting in the reformulated query.

We evaluate SSQR on two search engines through both auto-
matic and human evaluations, and compare with state-of-the-art
approaches, including SEQUER [8], NLP2API [43], LuSearch [34],
and GooglePS [11]. Experimental results show that SSQR improves
the MRR score by over 50% compared with the unsupervised base-
lines and gains competitive performance over the fully-supervised
approach. Human evaluation reveals that our approach can gener-
ate more natural and informative queries, with improvements of
19.31% and 26.35% to the original queries, respectively.

Our contributions are summarized as follows:

• To the best of our knowledge, SSQR is the first self-supervised
query reformulation approach, which does not rely on a
parallel corpus of reformulations.

• We propose a novel information gain criterion to select the
pertinent expansion positions that contribute the most valu-
able information to the original query.

• We perform automatic and human evaluations on the pro-
posed method. Quantitative and qualitative results show sig-
nificant improvements over the state-of-the-art approaches.

2 BACKGROUND
2.1 Code Search
Code search is a technology to retrieve and reuse code from pre-
existing projects [9, 16, 50]. Similar to general-purpose search en-
gines, developers often encounter challenges when attempting to
implement specific tasks. In such scenarios, they can leverage a code
search engine by submitting a natural language query. The search

Figure 1: An example of Google query reformulation.

engine then traverses an extensive repository of code snippets col-
lected from various projects, identifying code that is semantically
relevant to the given query. Code search can be broadly classified
into two categories: search within the context of a specific project
or as an open search across multiple projects. The search results
may include individual code snippets, functions, or entire projects.

2.2 Query Reformulation
Query reformulation provides an effective way to enhance the
performance of search engines [10, 31, 53]. The quality of queries is
often a bottleneck of search experience in web search [10]. This is
because the initial query entered by the user is often short, generic,
and ambiguous. Therefore, the search results could hardly meet the
specific intents of the user. This requires the user to revise his query
through multiple rounds. Query reformulation is a technology that
reformulates user’s queries into more concrete and comprehensive
alternatives [21]. Figure 1 shows an example of query reformulation
in Google search engine. When a user enters the query “convert
string” in the search box, there may exist multiple possible intents,
such as “convert something to a string” or “convert a string to
something”. Additionally, the specific programming language for
implementing the conversion function is not specified. In such
cases, conventional search engines like Google face challenges in
accurately determining the user’s true intent.

To address this issue, search engines often employ tools like
the Google Prediction Service (GooglePS). GooglePS automatically
suggests multiple reformulations of the original query. These refor-
mulations provide alternative options that the user can consider to
refine their search. By presenting a range of reformulations, users
can narrow down their search target by selecting the most relevant
reformulation that aligns with their intended query. This process
helps users in finding more precise and tailored search results.

Query reformulation broadly encompasses various techniques,
including query expansion, reduction, and replacement [25]. While
query expansion involves augmenting the original query with ad-
ditional information, such as synonyms and related entities, to
enhance its content, query reduction focuses on eliminating am-
biguous or inaccurate expressions. Query replacement, on the other
hand, involves substituting incorrect or uncommon keywords in
the original query with more commonly used and precise terms.
Among these types, query expansion constitutes the predominant
approach, accounting for approximately 80% of real-world search
scenarios [45].
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2.3 Self-Supervised Learning and Pre-trained
Models

Supervised learning is a class of machine learning methods that
train algorithms to classify data or predict outcomes by leveraging
labeled datasets. It is known to be expensive in manual labeling,
and the bottleneck of data annotation further causes generalization
errors [24], spurious correlations [29], and adversarial attacks [37].
Self-supervised learning alleviates these limitations by automati-
cally mining supervision signals from large-scale unsupervised data
using auxiliary tasks [33]. This enables a neural network model to
learn rich representations without the need for manual labeling
[52]. For example, the cloze test masks words in an input sentence
and asks the model to predict the original words. In this way, the
model can learn the semantic representations of sentences from
large unlabeled text corpora.

Pre-trained language models (PLMs) such as BERT [12], GPT [7],
and T5 [42] are the most typical self-supervised learning tech-
nology. A PLM aims to learn language’s generic representations
on a large unlabeled corpus and then transfer them to specific
tasks through fine-tuning on labeled task-specific datasets. This
requires the model to create self-supervised learning objectives
from the unlabeled corpora. Take the Text-to-Text Transfer Trans-
former (T5) [42] in Figure 3 as an example. T5 employs the Trans-
former [47] architecture where an encoder accepts a text as input

and outputs the encoded vector. A decoder generates the target
sequence based on the encodings. To efficiently learn the text rep-
resentations, T5 designs three self-supervised pre-training tasks,
namely, masked span prediction, masked language modeling, and
corrupted sentence reconstruction. By pre-training on large-scale
text corpora, T5 achieves state-of-the-art performance in a variety
of NLP tasks, such as sentence acceptability judgment [54], senti-
ment analysis [41], paraphrasing similarity calculation [39], and
question answering [27].

3 METHOD
The primary focus of this paper is on query expansion, the most
typical (accounting for 80%) technique for query reformulation.
Query expansion aims to insert key phrases into a query thereby
making it more specific and comprehensive. Essentially, query ex-
pansion addresses a pinpoint-then-expand problem, wherein the
goal is to identify potential information gaps within a given query
and generate a set of keywords to fill those gaps.

Inspired by the masked language modeling (MLM) task intro-
duced by pre-trained models like BERT [12], our proposed method
adopts a self-supervised idea. Specifically, wemask keywordswithin
complete code search queries and train a model to accurately pre-
dict and recover the masked information. This allows the model to
learn the underlying patterns and relationships within the queries,
enabling it to generate meaningful expansions for query reformu-
lation.

3.1 Overview
Figure 2 shows the main framework as well as the usage scenario
of our method. The pipeline involves two main phases: an offline
pre-training phase and an online expansion phase. During the pre-
training phase, SSQR continually pre-trains a PLM named T5 [42]
with a newly designed corrupted query completion task on an un-
labelled corpus of long queries (§3.2). This enables the T5 to learn
how to expand incomplete queries into longer ones. During the
runtime of SSQR, when a user presents a query for code search,
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Figure 4: A working example of each expansion step

SSQR employs a two-step process for query expansion. Firstly, it
enumerates candidate positions within the query that can be ex-
panded and utilizes the pre-trained T5 model to generate content
that fills these positions (as discussed in §3.3). Following the ex-
pansion step, SSQR proceeds to select the position that offer the
highest information gain after the expansion (introduced in §3.4).
This selection process ensures that the most valuable and informa-
tive expansions are chosen, thereby enhancing the reformulated
query in terms of its relevance and comprehensiveness.

Finally, once the query has been expanded, users conduct code
search by selecting the most relevant reformulation that aligns
with their intended query. Our approach specifically focuses on the
function-level code search scenario, which involves the retrieval of
relevant functions from a vast collection of code snippets spanning
multiple projects.

The following sections elaborate on each step of our approach
respectively.

3.2 Pre-training T5 with Corrupted Query
Completion

We start by pre-training a PLM which can predict the missing span
in a query. We take the state-of-the-art T5 [42] as the backbone
model since it has a sequence-to-sequence architecture and is more
compatible with generative tasks. Besides, T5 is specialized in pre-
dicting masked spans (i.e., a number of words).

To enable T5 to learn how to express a query more comprehen-
sively, we design a new pre-training objective called corrupted query
completion (CQC) using a large-scale corpus of unlabelled queries.
Similar to the MLM objective, CQC randomly masks a span of
words in the query and asks the model to predict the masked span.
More specifically, given an original query 𝑞 = (𝑤1, . . . ,𝑤𝑛) that
consists of a sequence of 𝑛 words, SSQR masks out a span of 15%×𝑛
consecutive words from a randomly selected position 𝑖 , namely,
𝑠𝑖:𝑗=

(
𝑤𝑖 , . . . ,𝑤 𝑗

)
, and replaces it with a [MASK] token. Then, the cor-

rupted query is taken as input to T5 which predicts the words in the
masked span. We use the teacher-forcing strategy for pre-training.

When predicting a word in the corrupted span, the context visible
to the model consists of two parts: 1) the uncorrupted words in
the original query, denoted as𝑞\𝑠𝑖 :𝑗 =

(
𝑤1, . . . ,𝑤𝑖−1,𝑤 𝑗+1, · · · ,𝑤𝑛

)
;

and 2) the ground truth words appeared before the current predict-
ing position 𝑤𝑡 , denoted as 𝑤𝑖:𝑡−1. We pre-train the model using
the cross-entropy loss, namely, minimizing

Lcqc = −
𝑗∑︁

𝑡=𝑖

log𝑝
(
𝑤𝑡 | 𝑞\𝑠𝑖 :𝑗 ,𝑤𝑖:𝑡−1

)
. (1)

Figure 4(a) shows an example of the CQC task. For a query “how
to reverse an array in Java” taken from the training corpus, the
algorithm corrupts the query by replacing the modifier “in Java”
with [MASK]. The corrupted query is taken as input to T5 which
predicts the original masked tokens “in Java”.

3.3 Expanding Candidate Spans
The pre-trained T5 model is then leveraged to expand queries. We
consider a query that needs to be expanded as an incomplete query
where a span of words is missing at a position (denoted as a masked
token), we want the model to generate a sequence of words to fill
in the span. This is exactly the problem of masked span prediction
as T5 aims to solve. Therefore, we leverage the pre-trained T5 to
expand the incomplete queries.

However, a query with 𝑛 words have 𝑛+1 positions for expansion.
Therefore, we design a best-first strategy: we enumerate all the 𝑛+1
positions as the masked spans, perform the CQC task, and select the
top-k positions that have the most information gain of predictions.
Specially, given a original query 𝑞 ={𝑤1,𝑤2, ...,𝑤𝑛}, SSQR enumer-
ates the 𝑛+1 positions between words. For each position, it inserts a
[MASK] token. This results in 𝑛+1 candidate masked queries. Each
incomplete query 𝑞=[𝑤1, . . . ,[MASK], . . . ,𝑤𝑛] is taken as input to
the pre-trained T5. The decoder of T5 generates a span of words
𝑠=[𝑣1, . . . , 𝑣𝑚] for the [MASK] token by sampling words according
to the predicted probabilities. Finally, SSQR replaces the [MASK]
token with the generated span 𝑠 , yielding the reformulated query.
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Algorithm 1: Span Expansion and Selection
Input: 𝑞: the input query written in natural language;
T5: the pre-trained T5 model;
𝑘 : the number of candidate positions;
𝑚: the maximum target length.
Output: Q: a set of candidate masked queries.

1 𝑤1, ...,𝑤𝑛 = tokenize(𝑞);
2 Q = {}; ⊲ initialize the query set.
3 for i = 1 to n do
4 𝑞 =𝑤1, ...,𝑤𝑖 , [MASK],𝑤𝑖+1, ...,𝑤𝑛 ; ⊲ insert a
5 [MASK] token to the 𝑖-th position in 𝑞.
6 𝑣1, ..., 𝑣𝑚 = T5(𝑞); ⊲ predict the content for the
7 [MASK] token.
8 𝐼𝐺 = 1

𝑚

∑𝑚
𝑗=1 𝑝 (𝑣 𝑗 )log𝑝 (𝑣 𝑗 ); ⊲ calculate the

9 information gain for the expansion.
10 Q = Q ∪ ⟨𝑞, 𝐼𝐺⟩;
11 end
12 Sort Q based on entropy in an descending order;
13 Q= top(Q, 𝑘); ⊲ select the top-𝑘 queries.
14 return Q

Figure 4(b) shows an example. Given the first twomasked queries,
the T5 model generates “in Java” and “integer” for the masked
tokens, respectively. The former refers to the language used to
implement the function, while the latter refers to the data type
of the target data structure. The reformulated queries supplement
the original queries with additional information, revealing user
potential intents from different aspects.

3.4 Selecting Expansion Positions
A query with 𝑛 words has 𝑛+1 candidate positions for expansion,
but not all of them are necessary for expansion. Hence, we must
determine which positions are the most proper to be expanded.
SSQR selects the top-k candidate queries that have the most missing
information in the masked span. The resulting expanded queries
are more likely to gain information after span filling.

The key issue here is how to measure the information gain after
filling each span. In our approach, we define information gain for a
span expansion as the negative entropy over the predicted proba-
bility distribution of the generated words [26, 36]. In information
theory, entropy [44] characterizes the uncertainty of an event in a
system. Suppose the probability that an event will happen follows
a distribution of (𝑝1, . . . , 𝑝𝑛), the entropy of the event can be com-
puted as −∑𝑛

𝑖=1 𝑝𝑖 log𝑝𝑖 . The lower the entropy, the more certain
that the event can happen. That means the event brings more infor-
mation to humans. This can be analogized to the span prediction
problem: when the probability distribution of the generated words
over the vocabulary is uniform, the entropy (uncertainty) becomes
high because every word is likely to be generated. By contrast,
smaller entropy means that there is a greatly different likelihood of
generating each word and thus the certainty of the generation is
high. The lower the entropy, the higher the certainty that this span
contains the word, and the more information that the expansion

brings to the query. If the span contains multiple words, we can
measure the information gain of the span prediction using their
average negative entropy.

For each candidate query𝑞, we predict a span 𝑠=[𝑣1, ..., 𝑣𝑚] using
the pretrained T5 model:

𝑝 (𝑣𝑖 ) = 𝑇 5(𝑞, 𝑣<𝑖 ), 𝑖 = 1, . . . , 𝐿 (2)

where each 𝑣𝑖 denotes a sub-token in the predicted span. Each
prediction 𝑝 (𝑣𝑖 ) follows a probability distribution of 𝑝1, . . . , 𝑝 |𝑉 |
over the vocabulary of the entire set of queries in the training
corpus, indicating the likelihood of each token in the vocabulary
appearing in the span.

Our next step is to compute the information gain of each expan-
sion using negative entropy: For each sub-token 𝑣𝑖 , the information
gain can be calculated by

𝐼𝐺 (𝑣𝑖 ) = −𝐻 (𝑣𝑖 ) =
|𝑉 |∑︁
𝑣=1

𝑝 (𝑣𝑖 = 𝑣)log𝑝 (𝑣𝑖 = 𝑣). (3)

The higher the IG, the more certainty that the prediction is. For a
predicted span 𝑠 = [𝑣1, . . . , 𝑣𝑚] with𝑚 sub-tokens, we compute the
average IG of all its tokens, namely,

𝐼𝐺 (𝑠) = 1
𝑚

𝐿∑︁
𝑖=1

𝐼𝐺 (𝑣𝑖 ) . (4)

Finally, we select the top 𝐾 expansions with the highest infor-
mation gain and then replace the [MASK] token with the predicted
span. The top-𝑘 expansions are provided to users for choosing the
most relevant one that aligns with their intention. The specific
details of the method are summarized in Algorithm 1.

Figure 4(c) shows an example query expansion. For a given query
“convert string to list” to be expanded, SSQR firstly enumerates five
expansion positions of the original query, inserting a [MASK] token
into each one. Next, the pre-trained T5 model takes these candidate
queries as input and calculates the information gain from the pre-
diction for these candidate queries. Finally, SSQR recommends the
top-2 masked queries (here k=2) with the highest information gain
(i.e., minimum entropy values) for users to choose.

4 EXPERIMENTAL SETUP
4.1 Research Questions
Weevaluate the performance of SSQR in query reformulation through
both automatic and human studies. We further explore the impact
of different configurations on performance. In specific, we address
the following research questions:

• RQ1: How effective is SSQR in query reformulation for
code search?
We apply query reformulation to Lucene and CodeBERT
based code search engines and compare the search accuracy
before and after query reformulation by various approaches.

• RQ2: Whether the queries reformulated by SSQR are
more contentful and easy to understand?
In addition to the automatic evaluation of code search per-
formance, we also want to assess the intrinsic quality of the
reformulated queries. To this end, we perform a human study
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Table 1: Statistics of Datasets

Stage Dataset # of Samples
Pre-training CODEnn [16] 1,000,000
Fine-tuning CodeXGLUE [35] 251,820
Search CodeXGLUE [35] 19,210

to assess whether the reformulated queries contain more in-
formation than the original ones and meanwhile conform to
human reading habits.

• RQ3: How do different configurations impact the per-
formance of SSQR?
To obtain a better insight into SSQR, we investigate the per-
formance of SSQR under different configurations. We firstly
investigate the effect of different positioning strategies, i.e.,
what is the best criteria to select the expansion position in
the original query. We are also interested in the number of
expansions for each query.

4.2 Datasets
We pre-train, fine-tune, and test all models using two large code
search corpora: CODEnn [16] and CodeXGLUE [35]. They are non-
overlapping and thus alleviate the duplicated code issue between
pre-training and downstream tasks [6].

Dataset for Pre-training. We pre-train T5 using code com-
ments from the large-scale CODEnn dataset. CODEnn has been
specifically processed for code search. Compared to CodeSearch-
Net [4], this dataset has a much larger volume (i.e., more than 10
million queries). We take the first 1 million for pre-training.

Dataset for Code Search. We use the code search dataset of
CodeXGLUE which provides queries and the corresponding code
segments from multiple projects. In this dataset, each record has
five attributes, including the code segment (in Python), repository
URL, code tokens, doc string (i.e., NL description of the function),
and the index of the code segment. We split the original dataset into
training and test sets, with 251,820 and 19,210 samples respectively.
The training set is used to fine-tune the CodeBERT search engine,
while the test set is used as the search pool from which a search
engine retrieves code. All queries in the test phase are tests on the
same pool. The statistics of our datasets are summarized in Table 1.

4.3 Implementation Details
Implementation of the pre-trained model. Our model is im-
plemented based on T5-base from the open-source collection of
HuggingFace [23]. We use the default tokenizer and input-output
lengths. Since HuggingFace does not provide an official PyTorch
script for T5 pre-training, we implement the pre-training script
based on the PyTorch Lightening framework [5]. We initialize T5
with the default checkpoint provided by Huggingface and contin-
ually pre-train it with our proposed CQC task. The pre-training
takes 3 epochs with a learning rate of 1e-3. The batch size is set
to 32 in all experiments. We set𝑚 and 𝑘 in Algorithm 1 to 10 and
3 respectively. Since T5 is non-deterministic, SSQR can generate
different queries for an input query at each run. To guarantee the

same output at each run, we fix the random seeds to 101 and reload
the same state-dict of T5.

Implementation of the search engines. We experiment under
two search engines based on CodeBERT [14] and Lucene [1].

1) A CodeBERT-based search engine: As our approach is built
on pre-trained models, we first verify the effectiveness on a pre-
training based search engine. Specifically, we test our approach on
the default search engine by CodeBERT. We reuse the implementa-
tion of the code search (i.e., Text-Code) task in CodeXGLUE [35].
Then, we fine-tune the CodeBERT-base checkpoint on a training
set from CodeXGLUE for 2 epochs with a constant learning rate of
5e-5.

2) The Lucene search engine: Besides the pre-training based search
engine, we also test our approach on a classic search engine named
Lucene [1]. Lucene is a keyword-based search library that is widely
adapted to a variety of code search engines and platforms [2, 3, 15].
We implement the Lucene search engine based on the Lucene core
in Java. We extract the code segments from the test dataset from
CodeXGLUE, parse them by Lucene’s StandardAnalyzer, and build
their indexes.

We train all models on a Linux server with Ubuntu 18.04.1 and a
GPU of Nvidia GeForce RTX 2080 Ti.

4.4 Baselines
We compare our method with the state-of-the-art query reformula-
tion approaches, including a supervisedmethod called SEQUER, and
unsupervised methods such as NLP2API, LuSearch, and GooglePS.

1) Supervised [8]: a supervised learning approach for query
reformulation named SEQUER. SEQUER leverages Trans-
former [47] to learn the sequence-to-sequence mapping be-
tween the original and the reformulated queries. The method
relies on a confidential parallel dataset of query evolution
logs provided by Stack Overflow. The dataset contains in-
ternal HTTP requests processed by Stack Overflow’s web
servers within one year.

2) NLP2API [43]: a feedback based approach that expands
query with recommended APIs. NLP2API automatically iden-
tifies relevant API classes collected from Stack Overflow us-
ing keywords in the initial search results and then expands
the query with these API classes.

3) LuSearch [34]: a knowledge-based approach that expands
a query with synonyms in WordNet [38]. The reformulated
queries by LuSearch are based on Lucene’s structural syntax,
which are too long and contain too many Lucene-specific
keywords. Due to the constraint on the input length of T5
model (i.e., 512 tokens), we keep the synonyms and remove
keywords about attribute names in Lucene such as “meth-
body” and “methname”.

4) GooglePS [11]: the Google query prediction service that
gives real-time suggestions on query reformulation. We di-
rectly enter test queries into the Google search box and
manually collect the reformulated queries in RQ2 and the
case study. We do not compare our method with GooglePS in
RQ1 because its search API is unavailable to us for process-
ing a large number of queries. Besides, our baseline model
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has demonstrated a great improvement over it in terms of
MRR [8].

4.5 Evaluation Metrics
The ultimate goal of query reformulation is to enhance search
accuracy by using the reformulated queries. In our experiments,
we first evaluate the search accuracy measured by the widely used
mean reciprocal rank (MRR). MRR is defined as the average of the
reciprocal ranks (i.e., the multiplicative inverse of the target post’s
rank) of the search results for all the queries, namely,

𝑀𝑅𝑅 =
1
𝑄

|𝑄 |∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(5)

where 𝑄 refers to a set of queries and 𝑟𝑎𝑛𝑘𝑖 stands for the position
of the first relevant document for the 𝑖-th query. A higher MRR
indicates better search performance.

Besides the indirect criteria in search performance, query refor-
mulation also aims to help users write more precise and high-quality
queries. Therefore, we further define two metrics to measure the
intrinsic quality of the reformulated queries:

• Informativeness measures how much information a query
contains that contributes to code search. We use this metric
to evaluate how much information gain the reformulation
brings to the original query.

• Naturalnessmeasures how well a query is grammatically cor-
rect and follows human reading habits. By using this metric,
we want the reformulation to be semantically coherent with
the original query.

Both metrics range from 1 to 5. Higher scores indicate better
performance.

5 RESULTS
5.1 RQ1: Performance on Code Search
As the ultimate goal of query reformulation, we first evaluate
whether the reformulated queries by SSQR lead to better code
search performance. We experiment under both search engines and
compare the improvement of MRR scores before and after query
reformulation by various methods. For each query, we calculate its
similarity to code instances in the test set. The top 100 instances
with the highest similarity are selected as the search results. Each
query has one ground-truth code instance in the test set. We calcu-
late the MRR scores by comparing the results and the ground-truth
code. Then, for each method, we select the first three reformula-
tions and report the highest MRR score among them. Since the
purpose of query reformulation is to hit the potential search intent
of the user. We believe that results with the maximum MRR in the
top-𝑘 reformulations are the most likely to satisfy this goal and are
therefore considered meaningful.

The experimental results are presented in Table 2. SSQR enhances
the MRR by 9.90% and 12.23% on the two search engines, respec-
tively. Compared to the two unsupervised baselines, LuSearch and
NLP2API, it brings a giant leap of over 50% in search accuracy. More
surprisingly, SSQR achieves competitive results to the supervised
counterpart though it is not given with any annotations. This in-
dicates that our self-supervised approach can assist developers to

Table 2: Performance of Various Approaches in Code Search

Search Engine Approach MRR

CodeBERT

No Reformulation 0.202
Supervised1 [8] 0.222 (+9.90%)
LuSearch [34] 0.144 (-28.70%)
NLP2API [43] 0.148 (-26.87%)
SSQR (ours) 0.222 (+9.90%)

Lucene

No Reformulation 0.133
Supervised [8] 0.155 (+16.91%)
LuSearch [34] 0.129 (-2.64%)
NLP2API [43] 0.136 (+2.87%)
SSQR (ours) 0.149 (+12.23%)

1 The result is not reproducible due to the unavailability of
the confidential parallel data they use.

write high-quality queries, which ultimately leads to better code
search results.

We notice that the performance of SSQR is slightly worse than
the supervised counterpart with the Lucene search engine. This is
probably because the supervised approach applies fixed expansion
patterns to queries and therefore tends to expand queries with
common, fixed keywords. These keywords can be easily hit by
search engines based on keyword matching (e.g., Lucene). On the
contrary, SSQR does not use fixed expansion patterns and thus has
more various keywords. Lucene is not able to perform keyword
matching on them. Instead, CodeBERT, which models the semantic
relationships between keywords, can understand queries expanded
by SSQR.

Another interesting point is that LuSearch and NLP2API do not
contribute to the CodeBERT-based search engine. This is probably
because both approaches append words to the tail of the original
query, hence perturbing the semantics of the original query when
we use deep learning based search engines such as CodeBERT.

5.2 RQ2: Qualitative Evaluation
To evaluate the intrinsic quality of the reformulated queries, we
perform a human study with programmers. Four participants from
author’s institution, but different labs, are recruited through invi-
tations. All participants are postgraduates in the area of software
engineering or natural language processing, having over-four-year
programming experience.We took the first 100 queries from the test
set in RQ1, and reformulated them using various methods, including
SEQUER, LuSearch, NLP2API, SSQR, and GooglePS. We assigned
100 search tasks to human annotators using these 100 queries and
present the reformulated queries by various approaches. The anno-
tators were asked to search code using Google and provide their
ratings (on a scale of 1 to 5) towards the reformulation in terms of
informativeness and naturalness, without knowing the source of
the reformulation tool.

Table 3 summarizes the quality ratings by annotators. Overall,
SSQR achieves the most improvement in terms of naturalness (19%)
and informativeness (26%), showing that it reformulated queries
are more human-like. Comparatively, GooglePS and SEQUER have
much less improvement. LuSearch and NLP2API even decrease the
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Table 3: Human Evaluation Result

Approach Naturalness Informativeness
No Reformulation 3.21 3.15
Supervised [8] 3.63 (+13.08%) 3.44 (+9.21%)
LuSearch [34] 2.63 (-18.07%) 3.17 (+0.63%)
NLP2API [43] 2.80 (-12.77%) 3.50 (+11.11%)
GooglePS [11] 3.27 (+1.87%) 3.33 (+5.71%)
SSQR (ours) 3.83 (+19.31%) 3.98 (+26.35%)

naturalness and informativeness, as they directly append relevant
APIs or synonyms to the tail of the original query, and thus break
the coherence of the query.

In particular, compared with the strong baseline SEQUER, SSQR
obtains a greater improvement of 17.14% in terms of informative-
ness, while outperforming slightly in terms of naturalness. The
main reason could be that SEQUER applies three reformulation
patterns, i.e., deleting unimportant words, rewriting typos, and
adding keywords, where only the last pattern increases the infor-
mativeness of the query. Besides, SEQUER often adds keywords
in a monotonous pattern, such as appending “in Java” at the tail
of the queries; meanwhile, our method can generate diverse spans
at the proper positions of the original queries. Consequently, the
reformulated queries by our approach are more informative.

5.3 RQ3: Performance under Different Configs
In this experiment, we evaluate the performance of SSQR in code
search under different configurations with the CodeBERT search en-
gine. We vary the positioning strategy and the number of candidate
positions in order to search for the optimal configuration.

Positioning Strategies. Selecting expansion positions is critical
to the performance. We compare three strategies, including the
entropy-based criterion:

• RAND randomly selects k positions in the original query for
expansion.

• PROB selects the top-k positions that have the maximum
probability while predicting their missing content.

• ENTR selects the top-k positions that have the minimum
entropy while predicting their missing content.

The results are shown in Table 4. The PROB and ENTR strate-
gies bring a large improvement (around 10%) to the code search
performance. This indicates that both criteria correctly quantify
the missing information at various positions. Between these two
strategies, ENTR performs slightly better than PROB, probably be-
cause ENTR considers the entire distribution of the prediction while
PROB just considers the maximum one. As expected, the RAND
strategy causes a degradation of 6.68% in code search performance
because it selects expansion positions without any guidance, which
results in incorrect or redundant expansions.

Number of Candidate Positions. We also investigate how
many expansions lead to the best performance. We vary the number
of candidate positions from 1 to 3 and verify their effects on perfor-
mance. Table 5 shows the results. We observe that increasing the
number of candidate positions has a positive effect on performance.
The best performance is achieved when 3 candidate positions are

Table 4: Performance of SSQR under Different Positioning
Strategies

Strategy MRR Improvement
RAND 0.1886 -6.68%
PROB 0.2220 +9.85%
ENTR 0.2221 +9.90%

Table 5: Performance of SSQR under Different Candidate
Position Numbers

# Positions MRR Improvement
1 0.1726 −14.60%
2 0.2074 + 2.62%
3 0.2221 + 9.90%

expanded. Meanwhile, only one candidate position can have a neg-
ative effect on query reformulation. The reason can be that our
method reformulates the original query with a variety of query
intents. A larger number of candidate positions can hit more user
intents and hence leads to better search accuracy.

5.4 Qualitative Analysis
To further understand the capability of SSQR, we qualitatively exam-
ine the reformulation samples by various methods. Four examples
are provided in Table 6. Example 1 compares the reformulation for
the query “The total CPU load for the Synology DSM” by various
methods. The original query aims to find the code that monitors the
CPU load of a DSM. The reformulated query by SSQR is more pre-
cise to the real scenario since CPU load and memory usage are often
important indicators that need to be monitored simultaneously. In
contrast, SEQUER only removes the “total” at the beginning of the
query during reformulation. LuSearch appends the query with the
synonyms of the keyword “total” such as “sum” and “aggreg”. Mean-
while, NLP2API appends the query with APIs that are relevant to
CPU and operating system, which are more useful compared to
those of SEQUER and LuSearch. GooglePS appends the word “7”
after “DSM” to indicate the version of DSM, which helps to narrow
the range of possible solutions.

In Example 2, the original query “Fetch the events” is incomplete
and ambiguous because the user does not specify what events to
fetch and where to fetch them from. The reformulated query by
SSQR is more informative than that by SEQUER: SSQR specifies the
source of events, i.e., from the server, which makes the query more
concrete and understandable; meanwhile, SEQUER only restricts
the programming language of the target code, without alleviating
the ambiguity of the original query. LuSearch expands the syn-
onyms of “Fetch” such as “get” and “convei” to the tail of the query.
NLP2API adds APIs relevant to events to the original query. But
these synonyms and APIs have limited effect on improving search
accuracy. GooglePS specifies the requirement of the query to be a
service by adding “Service worker” at the beginning of the original
query. But such a specification has a limited effect on narrowing
the search space.
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Table 6: Examples of Query Reformulation by Various Methods

Original The total CPU load for the Synology DSM
SEQUER The CPU load the Synology DSM
LuSearch The total CPU load for the Synology DSM sum total aggreg
NLP2API The total CPU load for the Synology DSM OperatingSystemMXBean ProcCpu String
GooglePS The total CPU load for the Synology DSM 7

SSQR The totalmemory usage and CPU load for the Synology DSM
Original Fetch the events
SEQUER Fetch the events c++
LuSearch Fetch the events bring get convei
NLP2API Fetch the events CalendarEntry ManyToOne OneToMany
GooglePS Service worker fetch event

SSQR Fetch the events from the server
Original Get method that raises MissingSetting if the value was unset.
SEQUER Get method that raises MissingSetting if the value was unset in c#
LuSearch Get method that raises MissingSetting if the value was unset. beget get engend
NLP2API Get method that raises MissingSetting if the value was unset. Praveen Kumar Date
GooglePS PHP foreach unset.

SSQR Get method that raises an exception withMissingSetting if the value was unset.
Original Load values from a dictionary structure. Nesting can be used to represent namespaces.
SEQUER Load values from a dictionary structure. Nesting can be used to represent namespaces.
LuSearch Load values from a dictionary structure. Nesting can be used to represent namespaces. cargo lade freight
NLP2API Load values from a dictionary structure. Nesting can be used to represent namespaces. Amino TKey TValue
GooglePS Python namespace class

SSQR Load a list of values from a dictionary structure. Nesting can be used to represent namespaces.

Example 3 shows the results for the query “Getmethod that raises
MissingSetting if the value was unset.” The reformulated query by
SSQR recognizes that MissingSetting is an exception and prepends
it with the exception keyword. This facilitates the search engine
to find code with similar functionality. In contrast, SEQUER just
specifies the programming language of the target code. Compared to
SSQR and SEQUER, LuSearch and NLP2API only append irrelevant
APIs and synonyms to the original query. Hence, the semantics of
the query are broken. GooglePS fails to reformulate such a long
query. Instead, it returns a search query from other users that
contains the keyword “unset”. The returned results by GooglePS
discard much information from the original query, making deviate
from the user intent.

Finally, the last example shows a worse case. Although SSQR
achieves the new state-of-the-art, it might occasionally produce
error reformulations. SSQR prepends a modifier “a list of” in front
of the word “values”, which conflicts with “dictionary” in the given
query and thus hampers the code search performance. This is prob-
ably because the word “values” occurs frequently in the training
corpus and often refers to elements in arrays and lists. Therefore,
SSQR tends to expand it with modifiers such as “all the” and “a
list of”. Comparably, SEQUER does nothing to the original query.
LuSearch concerns “Load” as the keyword and expands it. NLP2API
adds APIs relevant to the key and value of the dictionary data struc-
ture, which results in better search performance. GooglePS cannot
handle such a long query and just gives an irrelevant reformulation.

These examples demonstrate the superiority of SSQR in query
reformulation for code search, affirming the strong ability of both

position prediction and span generation. In future work, we will
conduct empirical research on the error types, and improve our
model for the challenging reformulations.

6 DISCUSSION
6.1 Strength of SSQR over fully supervised

approaches?
One debatable question is what are the benefits of SSQR since it
does not beat the SOTA fully-supervised approach in terms of the
code search metrics.

Fully-supervised methods such as SEQUER achieve the state-of-
the-art performance by sequence-to-sequence learning on a parallel
query set. However, acquiring such parallel queries is infeasible
since the query evolution log by search engines such as Google and
Stack Overflow is not publicly available. Besides, the sequence-to-
sequence approach tends to learn generic reformulation patterns,
e.g., specifying the programming language or deleting a few irrele-
vant words.

Compared to SEQUER, SSQR does not rely on the supervision
of parallel queries, instead, it is trained on a nonparallel dataset
(queries only) that does not need to collect the ground-truth refor-
mulations. This significantly scales up the size of training data, and
therefore allows the model to learn diverse reformulation patterns
from a large number of code search queries. SSQR provides an alter-
native feasible and cheap way of achieving the same performance.
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6.2 Limitations and Threats
We have identified the following limitations and threats to our
method:

Patterns of query reformulation. In this work, we mainly explore
query expansion, the most typical class of query reformulation.
While query expansion is only designed to supplement queries
with more information, redundant or misspelled words in the query
can also hamper the code search performance, which cannot be
handled by our method. Thus, in future work, we will extend our
approach to support more reformulating patterns, including query
simplification and modification. For example, in addition to only
inserting a [MASK] token in the CQC task, we can also replace
the original words with a [MASK] token or simply delete a token
and ask the pre-trained model to predict the deletion position. A
classification model can also be employed to decide whether to add,
delete or modify keywords in the original query.

Code comments as queries. As obtaining real code queries from
search websites is difficult, we use code comments from code search
datasets to approximate code queries in building and evaluating
our model. Although code comments are widely used for training
machine learning models on NL-PL matching [14, 16, 48], they may
not represent the performance of queries in real-world code search
engines.

7 RELATEDWORK
7.1 Query Reformulation for Code Search
Query reformulation for code search has gained much attention in
recent years [19, 20, 34, 43, 46, 51]. There are approximately three
categories of technologies, namely, knowledge-based, feedback-
based, and deep learning based approaches.

The knowledge-based approaches aim to expand or revise the ini-
tial query based on external knowledge such as WordNet [38] and
thesauri. For example, Howard et al. [20] reformulated queries us-
ing semantically similar words mined from method signatures and
corresponding comments in the source code. Satter and Sakib [46]
proposed to expand queries with co-occurring words in past queries
mined from code search logs. Yang and Tan [51] constructed a
software-specific thesaurus named SWordNet by mining code- com-
ment mappings. They expanded queries with similar words in the
thesaurus. Lu et al. [34] proposed LuSearch which extends queries
with synonyms generated from WordNet.

Unlike knowledge-based approaches, feedback-based approaches
identify the possible intentions of the user from the initial search
results and use them to update the original query. For example, Rah-
man and Roy [43] proposed to search Stack Overflow posts using
pseudo-relevance feedback. Their approach identifies important
API classes from code snippets in the posts using TF-IDF, and then
uses the top-ranked API classes to expand the original queries. Hill
et al. [19] presented a novel approach to extract natural language
phrases from source code identifiers and hierarchically classify
phrases and search results, which helps developers quickly identify
relevant program elements for investigation or identify alternative
words for query reformulation.

Recently, deep learning has advanced query reformulation signif-
icantly [8, 30]. Researchers regard query reformulation as amachine

translation task and employ neural sequence-to-sequence models.
For example, Cao et al. [8] trained a sequence-to-sequence model
with an attention mechanism on a parallel corpus of original and
reformulated queries. The trained model can be used to reformulate
a new query from Stack Overflow.

While deep learning based approaches show more promising
results than previous approaches, they rely on the availability of
large, high-quality query pairs. For example, Cao et al.’s work re-
quires the availability of query pairs within the same session in
the search logs of Stack Overflow. But such logs are confidential
and unavailable to researchers. This restricts their practicality in
real-world code search.

Unlike these works, SSQR is a data-driven approach based on
self-supervised learning. SSQR expands queries by pre-training a
Transformer model with corrupt query completion on large unla-
beled data. Results demonstrate that SSQR achieves competitive
results to that of fully-supervised models without requiring data
labeling.

7.2 Code Intelligence with Pre-trained
Language Models

In recent years, there is an emerging trend in applying pre-trained
language models to code intelligence [14, 17, 40, 48]. For exam-
ple, Feng et al. [14] pre-trained the CodeBERT model based on
the Transformer architecture using programming and natural lan-
guages. CodeBERT can learn the generic representations of both
natural and programming languages that can broadly support NL-
PL comprehension tasks (e.g., code defect detection, and natural
language code search) and generation tasks (e.g., code comment gen-
eration, and code translation). Wang et al. [48] proposed CodeT5,
which extends the T5 with an identifier-aware pre-training task. Un-
like encoder-only CodeBERT, CodeT5 is built upon a Transformer
encoder-decoder model. It achieves state-of-the-art performance
on both code comprehension and generation tasks in all directions,
including PL-NL, NL-PL, and PL-PL.

To the best of our knowledge, SSQR is the first attempt to apply
PLM in query reformulation, which aims to leverage the knowledge
learned by PLM to expand queries.

8 CONCLUSION
In this paper, we propose SSQR, a novel self-supervised approach
for query reformulation. SSQR formulates query expansion as a
masked query completion task and pre-trains T5 to learn general
knowledge from large unlabeled query corpora. For a search query,
SSQR guides T5 through enumerating multiple positions for expan-
sion and selecting positions that have the best information gain
for expansion. We perform both automatic and human evaluations
to verify the effectiveness of SSQR. The results show that SSQR
generates useful and natural-sounding reformulated queries, out-
performing baselines by a remarkable margin. In the future, we will
explore other reformulation patterns such as query simplification
and modification besides query expansion. We also plan to compare
the performance of our approach with large language models such
as GPT-4.
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