

Continuous Decomposition of Granularity for Neural Paraphrase Generation

COL

2022

• Xiaodong Gu¹, Zhaowei Zhang¹, Kang Min Yoo², Sang-Woo Lee², Jung-Woo Ha²

¹School of Software, Shanghai Jiao Tong University ²NAVER AI Lab

Neural Paraphrase Generation

- Given a source sentence x, generate a paraphrase y.
- Existing approaches: sequence-to-sequence learning (Transformers)

What makes the second world war happen

Limitations: Transformers treat a sentence as a flat sequence of words

DNPG: Decomposable Neural Paraphrase Generation

- Paraphrase exists in different levels of granularity [Li et al. ACL' 19]
 - Sentential Level: abstractive, general
 - Phrasal Level: diverse, domain-specific

Sentential level:what is the reason of $x \rightarrow$ what makes x happenPhrasal level:world war II \rightarrow the second world war

Zichao Li, Xin Jiang, Lifeng Shang, Qun Liu. Decomposable Neural Paraphrase Generation. In ACL 2019.

Examples [Li et al. ACL' 19]

DNPG: Decomposable Neural Paraphrase Generation

- Separator: classifies each token into templates (z=0) and details (z=1)
- Each class is feed into a individual encoder and decoder.
- Aggregator: the final predictions are aggregated into the final prediction

On Multiple Levels of Granularity

- There are many ways of decomposing a sentence, corresponding to multiple levels of granularity.
- Numerical representation of granularity for each token:

Text	What is the reason for World War II?	
Decomposition 1	What is the reason for world war II?	
Decomposition 2	What is the reason for world war II?	
Decomposition 3	What is the reason for world war II?	
Decomposition 4	What is the reason for world war II?	
Decomposition 5	What is the reason for world war II?	
	↓ ·	Continuous
Levels of granular	ity (marked as superscripts):	granularity?
What ¹ is ¹ the ² reas	on ³ of ² World ⁴ War ⁴ II ⁵ ?	

What |

0

is

0

the

0.2

0.3

Our Idea

Continuous Decomposition of Granularity

0~1 granularity for each token

Paraphrasing tokens of similar granularity

Encoder

of

0.2

world

0.5

MatMul

SoftMax

Scale

MatMul

Linear

Linear

Granularity-Aware Self-Attention

- An attention header that predicts the continuous granularity level [0,1]
- Two attention masks that integrates the granularity

1. Granularity head

2.Resonance mask

3.Granularity scope mask

Granularity-Aware Attention

н

Granularity Head

- An extension of the self-attention head.
- Let $z_i \in [0,1]$ denote the granularity of tokens i,

 $z_i = \text{sigmoid} (\mathbf{w}^T \boldsymbol{h}_i)$

• For layer
$$\ell$$
, $\mathbf{z}^{l} = \operatorname{sigmoid}(\mathbf{W}^{G}\mathbf{H}^{l-1}), l = 2, ..., L$

Granularity Resonance Mask

- Tokens of the same level of granularity have the strongest correlation.
- The correlation between token i and j:

$$\mathbf{C}_{ij} = \begin{cases} 1, & \text{if } z_i = z_j \\ 0, & \text{otherwise} \end{cases}$$

In the **binary case** where $z_i, z_j \in \{0, 1\}$

$$egin{aligned} \mathbf{C}_{ij} =& (1-z_i) imes \max(0,1-(z_i+z_j)) \ &+ z_i imes \min(1,1-z_i+z_j) \end{aligned}$$

Continuous version where $z_i, z_j \in [0, 1]$

Granularity Scope Mask

- Neighboring tokens gain more attention than distant tokens.
- The correlation between tokens i and j :

$$\mathbf{S}_{ij} = \begin{cases} 1 & \text{if } |i-j| < (N-\epsilon)^{(1-z_i)} + \epsilon \\ 0 & \text{otherwise} \end{cases}$$

In the **binary case** where $z_i, z_j \in \{0, 1\}$

$$\mathbf{S}_{ij} = \max(0, \min(1, (N-\epsilon)^{(1-z_i)} + \epsilon - |i-j|))$$

Continuous version where $z_i, z_i \in [0, 1]$

Overall Architecture

Simply replacing the attention module with the proposed GA-Attention module.

Experimental Setup

Datasets

Language	Train	Valid	Test
Quora Question Pairs	100,000	4,000	20,000
Twitter URLs	110,000	5,000	1,000

Metrics

ibleu bleu-2 bleu-4 rouge-l meteor

Experimental Setup

- Baselines
 - RedidualLSTM (Prakash et al., 2016): an LSTM sequence-to-sequence model using residuals between RNN layers;
 - PointerGenerator (See et al., 2017): RNN seq2seq using copy mechanism;
 - Transformer (Vaswani et al., 2017): the vanilla Transformer model;
 - Transformer+Copy: an enhanced Transformer with copy mechanism (Gu et al., 2016); and
 - DNPG (Li et al., 2019): a popular paraphrase generation model based on Transformer.

Experimental Results

Automatic Evaluation

			Quor	a				Twitter	URL	
Model	iBLEU	BLEU-2	BLEU-4	ROUGE-I	L METEOR	iBLEU	BLEU-2	BLEU-4	ROUGE-I	_ METEOR
ResidualLSTM	20.45	40.71	26.20	36.19	32.67	20.29	36.75	25.92	32.47	29.44
Pointer-generator	22.65	43.82	28.80	42.36	40.87	25.60	44.50	32.40	38.48	36.48
Transformer	21.14	37.97	26.88	40.14	38.21	24.44	44.45	31.12	31.97	32.49
Transformer+Copy	22.90	44.42	28.94	37.60	38.34	27.07	48.44	34.35	38.37	38.19
DNPG	24.55	47.72	31.01	42.37	42.12	25.92	46.36	32.91	36.77	36.28
FSET	-	51.03	33.46	-	38.57	-	46.35	34.62	-	31.67
C-DNPG (R)	26.94	47.58	34.05	46.17	44.75	27.96	49.98	35.80	38.67	39.39
C-DNPG (S)	26.68	47.48	33.93	46.22	46.66	28.19	49.10	35.95	38.89	39.06
C-DNPG ($R \odot S$)	25.96	46.25	33.02	44.64	44.25	30.25	49.00	38.58	41.60	41.71
C-DNPG (R+S)	26.66	50.96	33.69	44.45	43.33	28.73	50.49	36.61	39.80	40.42

C-DNPG achieves the state-of-the-art results in terms of many metrics.

Experimental Results

Qualitative Analysis

Layer 3	how	long	g da	bes	it	take	e to	get	to	mars	?
Layer 2	how	long	g da	bes	it	take	e to	get	to	mars	?
Layer 1	how	long	g da	bes	it	take	e to	get	to	mars	?
DNPG	how	lon	g do	Des	it	take	e to	get	to	mars	?
Layer 3	what	is	the	exp	bec	ted	cut	off	of	upsc	2016?
Layer 2	what	is	the	exp	bec	cted	cut	off	of	upsc	2016?
Layer 1	what	is	the	exp	bec	ted	cut	off	of	upsc	2016?
DNPG	what	is	the	ex	pec	cted	cut	off	of	upsc	2016
Laver 3	why	is th	here	so	m	uch	mora	al po	licir	na in	indian

Figure 2: Examples of multi-granularity extracted by C-DNPG (Layer1-3) and DNPG (bottom) on the Quora dataset. Warmer colors represent higher levels of granularity (templates) while colder colors represent lower levels of granularity (details). We present granularity of all Transformer layers and compare the results with those of DNPG.

Layer 3	why	is	there	SO	much	moral	policing	in	indian	schools?
Layer 2	why	is	there	so	much	moral	policing	in	indian	schools?
Layer 1	why	is	there	SO	much	moral	policing	in	indian	schools?
DNPG	why	is	there	SO	much	moral	policing	in	indian	schools?

Experimental Results

Case Study

Sentence:	What is a good first programming language?
Transformer:	What is good?
DNPG:	What is good for coding?
C-DNPG:	What are the best programming languages for beginners?
Human:	Whats a good and easy programming language to learn?
Sentence:	What will the year 2100 be like?
Sentence: Transformer:	What will the year 2100 be like? What is likely to happen in the world?
Sentence: Transformer: DNPG:	What will the year 2100 be like? What is likely to happen in the world? What are did today. year - year of unique year of country?
Sentence: Transformer: DNPG: C-DNPG:	What will the year 2100 be like? What is likely to happen in the world? What are did today. year - year of unique year of country? What will the world look like in 2100?

Conclusion

C-DNPG – continuous decomposition of granularity for neural paraphrase generation.

- Extending self-attention with a granularity head
- Two novel masks that incorporates granularity into self-attention.

Future Work

PLMs

