
InfeRE: Step-by-Step Regex Generation via Chain of Inference

Shuai Zhang, Xiaodong Gu, Yuting Chen, Beijun Shen

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

Motivation

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

(([a-z])(.*))&((.*)([AEIOUaeiou])) 1 23456789......

Intermediate steps

Step 1	lowercase	[a-z]
Step 2	start with	[a-z](.*)
Step 3	vowel	[AEIOUaeiou]
Step 4	end with	(.*)[AEIOUaeiou]
Step 5	and	(([a-z])(.*))&((.*)([AEIOUaeiou]))

Q: lines starting with a lower-case letter and ending with vowel

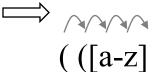
Generation order by autoregressive LM:

Q: lines starting with a lower-case letter and ending with vowel

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

 \Longrightarrow \land


Q: lines starting with a lower-case letter and ending with vowel

UTUS TU

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

Q: lines starting with a lower-case letter and ending with vowel

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

Q: lines starting with a lower-case letter and ending with vowel

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

Q: lines starting with a lower-case letter and ending with vowel

The real order of text-matching processes:

[a-z]

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

(([a-z]) (.*))&((.*)([AEIOUaeiou]))

Q: lines starting with a lower-case letter and ending with vowel

$$\Rightarrow \land \land \land ([a-z])(.*)$$

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

Q: lines starting with a lower-case letter and ending with vowel

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

Q: lines starting with a lower-case letter and ending with vowel

Q: lines starting with a lower-case letter and ending with vowel

Generation order by autoregressive LM:

Q: lines starting with a lower-case letter and ending with vowel

Chain of Thought

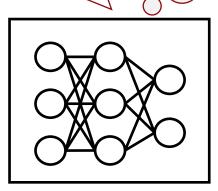
The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

The answer is 27 ×

Chain of Thought

I can give you some examples:

1. ******=>*******

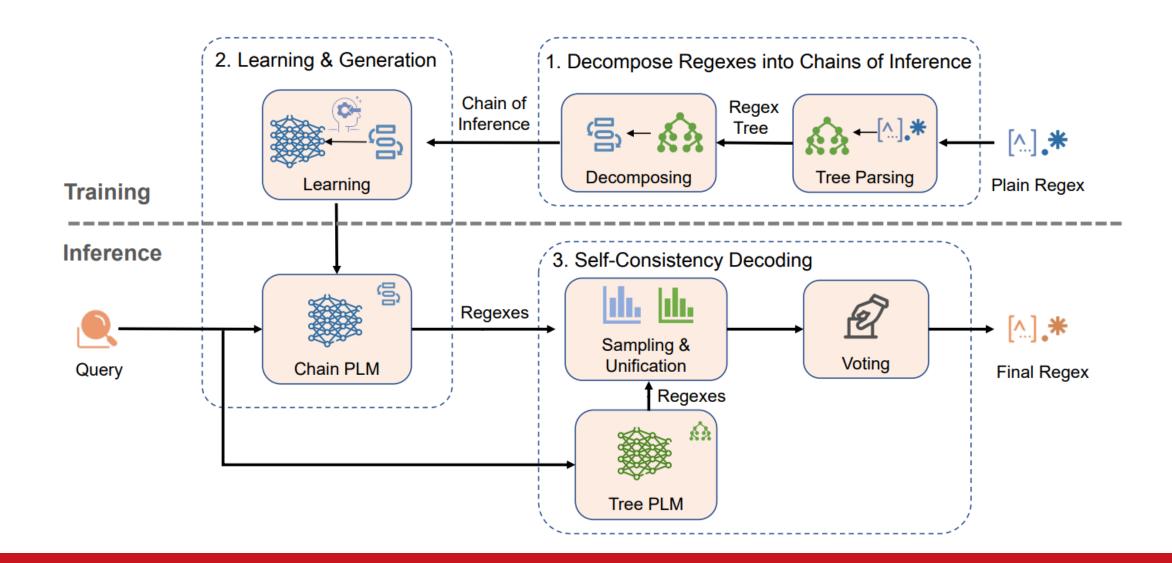

2. *****=>******

Think Step By Step

The answer is 9 $\sqrt{}$

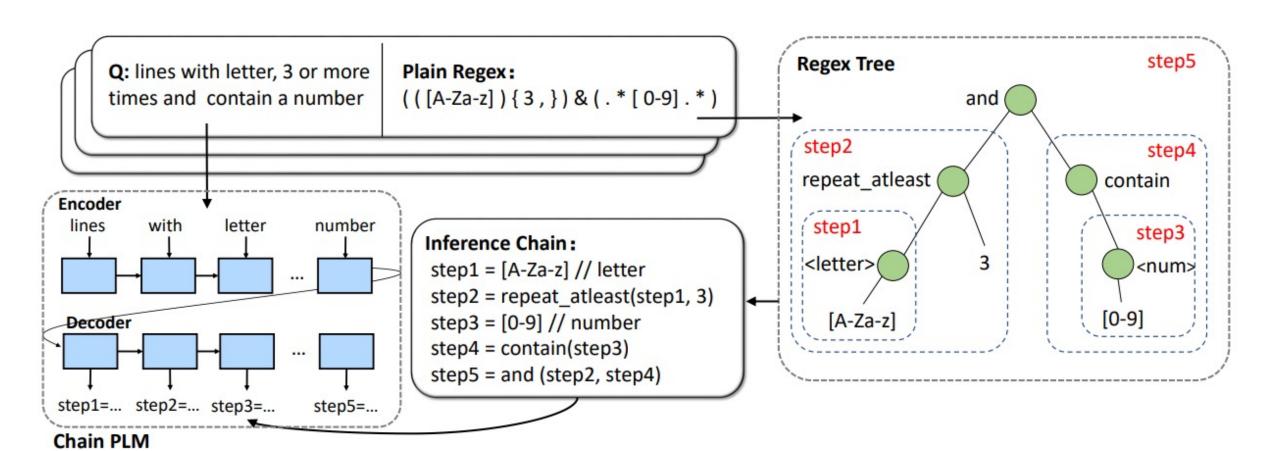
The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9

When Chain of Thought Met Regex Generation

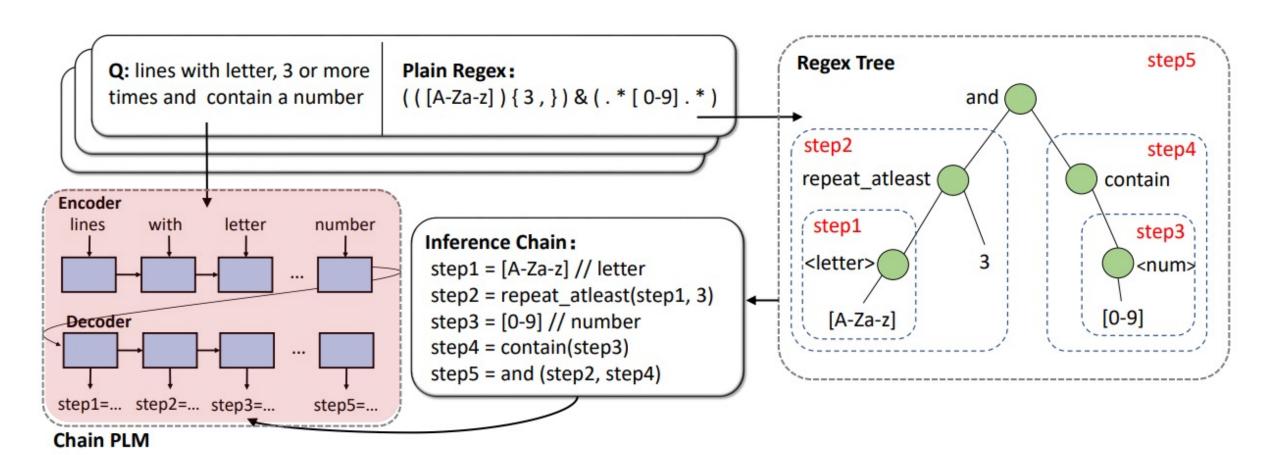

Can chain-of-thought be used in the domain of regex generation, and if so, how?

Main Challenges:

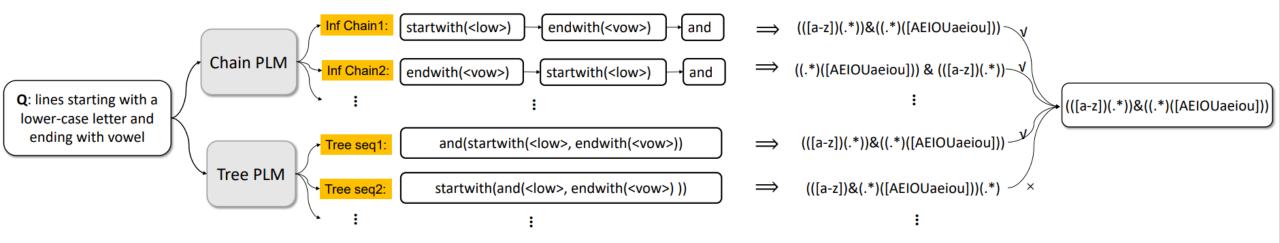
- 1. wide range of domains encompassed by existing LLM
- 2. considerable expense associated with the manual formulation of prompts



Overview of InfeRE



1. Creating Chains of Inference



2. Learning & Generation

3. Self-consistency Decoding

Evaluation

RQ1: How effective is InfeRE in generating regexes from natural language descriptions?

RQ2: What is the effect of chain of inference?

RQ3: What is the effect of self-consistency decoding and how does the number of output samples affect the performance of selfconsistency decoding?

RQ4: What is the impact of data size on the performance of regex generation?

Experiment Setup

Datasets

Dataset	Train(Fine-tune)	Valid	Test	
NL-RX-Turk	6,500	1,000	2,500	
KB13	618	206	206	

Metrics

- EM measures the ratio of regexes that exactly match ground—truth regexes
- **DFA-EQ** measures the ratio of regexes that semantically equivalence by comparing their DFAs.

Comparison Methods

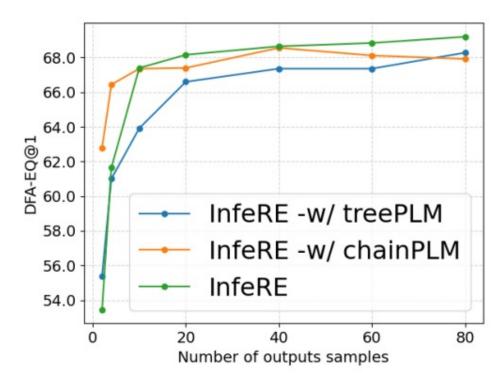
- 1. Semantic-Unify
- 2. Deep-Regex
- 3. SemRegex
- 4. SoftRegex
- $5. S_2RE$
- 6. S_2RE-T5
- 7. TRANX

Effectiveness of InfeRE in Regex Generation (RQ1)

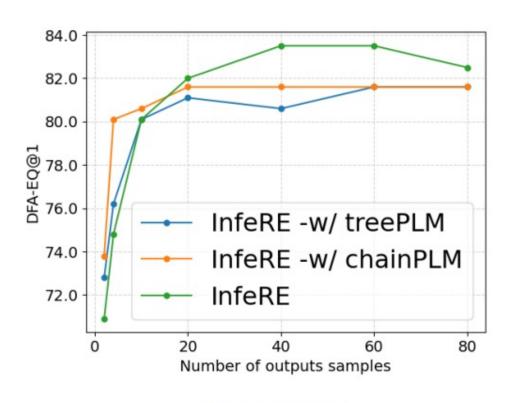
Approach	NL-RX-Turk			KB13		
	DFA-EQ@1(%)	DFA-EQ@5(%)	EM(%)	DFA-EQ@1(%)	DFA-EQ@5(%)	EM(%)
Semantic-Unify	38.6	_	_	65.5	_	_
Deep-Regex ^{MLE}	60.3	76.0	40.7	66.5	75.7	55.8
Deep-Regex ^{MLE} Deep-Regex ^{MML}	62.4	76.8	39.2	68.2	77.7	56.8
SemRegex	62.3	_	_	78.2	_	_
SoftRegex	62.8	72.1	41.5	78.2	79.6	62.1
S_2RE	62.8	_	_	78.2	_	_
S ₂ RE-T5	67.6	85.7	54.4	82.0	88.8	71.4
TRANX	58.8	75.6	44.0	73.8	82.0	61.2
InfeRE (ours)	69.2	89.3	53.4	82.5	91.3	69.4
-w/o SC	67.8	85.9	55.5	81.6	87.9	72.3
- w/o SC+CI	67.2	85.5	54.2	82.0	88.8	70.4

Effect of Chain of Inference (RQ2)

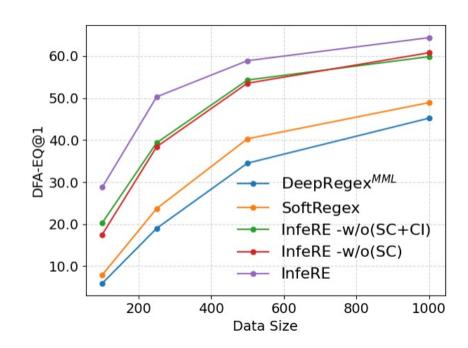
Approach GP'	Γ2 BART-small	BART-base	T5-small	T5-base
- w/o CI 52	0 55.4	55.9	65.6	67.2
- w/ CI 55	7 59.6	59.8	65.2	67.8

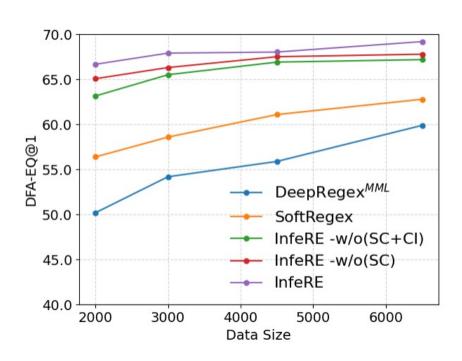


Effect of Self-Consistency Decoding (RQ3)


Approach	NL-RX-Turk			KB13		
	DFA-EQ@1(%)	DFA-EQ@5(%)	EM(%)	DFA-EQ@1(%)	DFA-EQ@5(%)	EM(%)
Semantic-Unify	38.6	_	_	65.5	_	_
Deep-Regex ^{MLE}	60.3	76.0	40.7	66.5	75.7	55.8
Deep-Regex ^{MLE} Deep-Regex ^{MML}	62.4	76.8	39.2	68.2	77.7	56.8
SemRegex	62.3	_	_	78.2	_	_
SoftRegex	62.8	72.1	41.5	78.2	79.6	62.1
S_2RE	62.8	_	_	78.2	_	_
S_2RE-T5	67.6	85.7	54.4	82.0	88.8	71.4
TRANX	58.8	75.6	44.0	73.8	82.0	61.2
InfeRE (ours)	69.2	89.3	53.4	82.5	91.3	69.4
-w/o SC	67.8	85.9	55.5	81.6	87.9	72.3
- w/o SC+CI	67.2	85.5	54.2	82.0	88.8	70.4

Effect of Self-Consistency Decoding (RQ3)




(b) KB13

Impact of Data Size (RQ4)

(a) Size from 100 to 1000

(b) Size from 2000 to 6500

Conclusion

- a novel paradigm of regex generation via chain of inference
- achieves significant improvement in regex generation

Future Work

- chain of inference in other forms
- more code intelligent tasks

Thank You!

Q&A