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Deep Learning Based Code Search

Query Code

public void sort(int[] para) {

how to sort arrays? Deep Neural int ret = Array.sort(para);
Networks }
Code Corpus Tifaﬁﬂng
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When Deep Learning Met Uncommon Langua%efsm\%mﬁ

Main Challenges:

= Domain-Specific Languages

= New Languages

I’m well trained with a
large amount of data.
| can search code for
Python, C# and Java .

= Private Codebase

What is Solidity?
Too few people
use it, | don't know

How to sort an
array in Solidity?
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Our ldea

* Towards Few-Shot Learning

Aha! | have already
been trained how to
sort an array In Java,
Python, etc

Really?!! Just a
few samples? |
need large data.

| can provide
you with a
few examples,
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Pre-Training & Fine-Tuning ?

A F=mml

Fine-tuning on small-scale domain-
specific programming language

Unsupervised pre-training on large-
scale common programming language

\ Classifier 75% relevant
o59,  Irrelevant
I h_ave read billions e
of lines of Java code
- =4
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Source PLs

Phase1: Pre-Training

BERT
o

(SIS

' code search for
<[> SOLIDITY ¢ Solidity might
not be hard?

Phase2 : Fine-Tuning
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Problems with Pre-Trained Language Models Ia

<

Pretraining & Finetuning

Meta Learning

Problems: Our solution:
* Conflict Representations Learning a good Initialization of various
* Distracted Parameters models using meta-learning.
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Cross-Domain Deep Code Search with Meta Learnin
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1.Pre-Training

2.Meta-Learning

3.Fine-Tuning

4.Code Search

Query

maximum salary?

Domain-Specific Code

Search

@ Pre-training

Code Search
Model

Code Search
Model

308
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Be |

| | </>
Codebase

Model Training

Bt

@ Fine-Tuning

SQL g Target PL

select max(salary)
from employee
where age <= 60;
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Step 1. Pre-Training Ia

7 N\T T+ 1=

Masked LM Masked LM

= Masked Language Modeling

(MLM) | o

* Input: natural language
text+code snippet

* Task: Randomly mask 15%
tokens, and let the model

predict the original tokens

Mask NL Mask PL
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Step 2. Meta-Learning and Few-Shot Learnlng%r

Meta Learning

Also known as “Learning to learn”, a series of learning tasks are constructed and a meta learner
collects the information of each learning task and adjusts the learning strategy according to the
learning situation of each task.

Few-Shot Meta Learning

A series of few-shot learning tasks are constructed. A meta learner collects the information of each
few-shot task and adjusts the learning strategy according to the learning situation of each few-shot

task.
Global ) ( -
parameters O J Meta Update L 0SS
Local images for T; Compute using
Divahd (small)

[ Local )

1 o] )[ Updated 0; }
parameters u; Locally optimized using D;an (large)
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_____________________________

NL Comment 1 Code Snippet 1

NL Comment 2 Code Snippet 2 25% relevant

5% | irrelevant

| classifier

NL Comment n Code Snippet n

o o e e e e e e e e e e e R e e e M e e -
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Step 4. Code Search on the Target Language
P 9 guag anN=——h
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' Code Search \
Model I
: Query S Code |
|
I select max(salary) I
I maximum salary? ~——» — from employee I
! where age <= 60; I
|
|
|
|
| t |
! . . n l
I Domain-Specific % :
I Code Search
1 Codebase II
\ /
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R rch tion
esearch Questions e [

1. How effective 1s CDCS In cross-domain code search?

2. What is the impact of data size on the performance of cross-
domain code search?

3. How effective i1s CDCS applied to other pre-trained programming
anguage models?

4. How do different hyperparameters affect the performance of CDCS?
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Datasets

= Datasets for pre-training and meta-learning

__ Phase | Pthon | _Java___

pre-traning # functions
# comments
meta learning # functions
# comments

= Datasets for fine-tuning

Train(Fine-tune)

Solidity 56,976
SOL 14.000

412,178
412,178
824,342
824,342

4,096
2,008

454,451
454,451
908,886
908,886

1,000
1,000
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Metrics
A~F=amd
= MRR
. |
" MRR=¥ Zl—l Rank(i)

* Top-k accuracy

" measures how many answers in the first k results hit the query.
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Comparison Methods
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Code Search with Pre-training
Code Search based on pre-trained model with Natural Language

Within-domain Code Search with CodeBERT
Cross-Language Code Search with CodeBERT
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Experimental Results

ArF=mnd
= Effectiveness in Cross-Domain Deep Code Search (RQ1)
No-Pretraining 0.002 0.010 0.022 0.0124
CodeBERT(NL-based) 0.652 0.926 0.966 0.7690
sOL CodeBERT(within-domain)  0.607 0.899 0.945 0.7351
CodeBERT(cross-language) 0.675 0.920 0.960 0.7818
CDCS 0.746 0.952 0.972 0.8366
No-Pretraining 0.002 0.008 0.014 0.0101
CodeBERT(NL-based) 0.453 0.732 0.821 0.5801
Solidity CodeBERT(within-domain)  0.515 0.798 0.857 0.6383
CodeBERT(cross-language) 0.532 0.779 0.848 0.6436
CDCS 0.658 0.829 0.879 0.7336
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Experimental Results

= Effect of Data Size (RQ2)
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Solidity
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Experimental Results
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» Performance on other Pre-trained Models(RQ3)

Language Model Acc@1 Acc@>5 Acc@10 MRR
No-Pretraining 0.002 0.010 0.022 0.0124
GPT2(NL-based) 0.481 0.808 0.889 0.6204

SOL GPT2(within-domain) 0.470 0.785 0.877 0.6088
GPT2(cross-language) 0.447 0.767 0.875 0.5899

CDCSgpr-s 0.511 0.823 0.905 0.6464
No-Pretraining 0.002 0.008 0.014 0.0101
GPT2(NL-based) 0.484 0.751 0.830 0.6079

Solidity GPT2(within-domain) 0.487 0.772 0.848 0.6073
GPT2(cross-language) 0.481 0.760 0.827 0.6057

CDCSgpr_s 0.561 0.781 0.846 0.6607
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Experimental Results

* Impact of Different Hyperparameters (RQ4)
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Conclusion

CDCS - cross-domain code search approach.

= extends pre-trained models with meta learning

* achieves significant improvement in domain-specific code search.

Future Work
* more languages

= other software engineering tasks.
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