“What parts of your apps are loved by users?'”

Xiaodong Gu and Sunghun Kim

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong
{xguaa, hunkim}@cse.ust.hk

Abstract—Recently, Begel et al. found that one of the most
important questions software developers ask is ‘“what parts of
software are used/loved by users.” User reviews provide an
effective channel to address this question. However, most existing
review summarization tools treat reviews as bags-of-words (i.e.,
mixed review categories) and are limited to extract software
aspects and user preferences.

We present a novel review summarization framework, SUR-
Miner. Instead of a bags-of-words assumption, it classifies reviews
into five categories and extracts aspects in sentences which include
evaluation of aspect using a pattern-based parser. Then, SUR-
Miner visualizes the summaries using two interactive diagrams.
Our evaluation on 17 popular apps shows that SUR-Miner
summarizes more accurate and clearer aspects than state-of-the-
art techniques, with an average Fl-score of 0.81, significantly
greater than that of ReviewSpotlight (0.56) and Guzmans’ method
(0.55). Feedback from developers shows that 88% developers
agreed with the usefulness of the summaries from SUR-Miner.

Index Terms—Review Summarization; User Feedback; Senti-
ment Analysis; Data Mining

I. INTRODUCTION

Often software developers are eager to know what parts of
their software is used/loved by users. According to a survey
covering 4,000 Microsoft engineers, the question “What parts
(aspects) of a software product are most used and/or loved by
customers?” ranks the second among the top 145 questions
developers asked [5]. This question requires developers to
analyze preferences for and opinions toward different software
aspects.

User reviews are an important channel for software devel-
opers to understand users’ requirements, preferences and com-
plaints [21], [31]. Through analyzing user reviews, developers
can evaluate their products, identify users’ preference [21], and
improve software maintenance and evolution tasks [33].

Yet understanding software reviews is very challenging and
tedious. First, the volume of user reviews is too large to be
checked manually. Developers receive hundreds or thousands
of reviews every day [10], [31]. Given the large number of
reviews, they need to read and manually classify the reviews
into complaints or new feature requests [30]. Such processes
are extremely time-consuming and tedious. On the other hand,
user reviews fall into too many varieties that need to be
distinguished [31]. They can be new feature requests, bug
reports, praises, or complaints. Different types of reviews target
different tasks and developers [30]. For example, a praising
review may not be valuable for software testing but can be

I'This question is from a study by Begel et al. at Microsoft [5]

essential for product evaluation. A review reporting a bug is
not important for requirements analysis but can be crucial for
software testing. Given millions of reviews, developers must
first categorize them manually [30].

A few tools are proposed for software user review summa-
rization. For example, Chen et al. [10] filter non-informative
reviews by a classification technique and apply Latent Dirichlet
Allocation (LDA) [6] to summarize topics of the informative
reviews. Fu et al. [15] filter rating-inconsistent reviews, which
have sentiments different from their rating by a regression
model. They also apply LDA to summarize topics in the
remaining reviews and show rating trends for different topics.
Tacob et al. [21] filter reviews that request new features by
linguistic rules and summarize key words of the requests
with LDA. These tools summarize informative and reliable
reviews. However, the LDA model that they used is based
on a bag-of-word assumption without considering sentence
structures and semantics. Such assumption may be problematic
for software reviews which exhibit multiple purposes (e.g.,
aspect evaluation and feature request) and sentiments. Since
these tools mix up aspects and opinions, and mix topics related
to different categories, they are not effective to gauge users’
sentiments toward each aspect.

To address these limitations, we propose Software User
Review Miner (SUR-Miner), a framework that can summarize
users’ sentiments and opinions toward corresponding software
aspects. Instead of treating reviews as bags of words, SUR-
Miner makes full use of the monotonous structure and se-
mantics of software user reviews, and directly parses aspect-
opinion pairs from review sentences based on pre-defined
sentence patterns. It then analyzes sentiments for each review
sentence and associate sentiments with aspect-opinion pairs in
the same sentence. Finally, it summarizes software aspects by
clustering aspect-opinion pairs with the same aspects.

We empirically evaluate the performance of SUR-Miner
on recent user reviews of 17 Android apps such as Swiftkey,
Camera360, WeChat and Templerun2. We measure the per-
formance of key processes (i.e., classification, aspect-opinion
extraction and sentiment analysis) by Fl-score which is a
common accuracy measure in the text mining literature [14],
[38]. Results show that the SUR-Miner produces reliable
summaries, with average Fl-scores of 0.75, 0.85 and 0.80 for
review classification, aspect-opinion extraction and sentiment
analysis, respectively. The final aspects from SUR-Miner are
significantly more accurate and clearer than state-of-the-art
techniques, with an Fl-score of 0.81, greater than that of
ReviewSpotlight (0.56) and Guzmans’ method (0.55).



As a proof-of-concept application, we design two interac-
tive diagrams, aspect heat map and aspect trend map, using the
summaries from SUR-Miner to help developers grasp users’
preferences and typical opinions towards each software aspect.
Feedback from corresponding app developers is also encour-
aging, with 88% of respondents agreeing that the summaries
of SUR-Miner are useful, indicating that SUR-Miner helps
developers understand users’ preferences for different aspects
in practice.

Overall, our study makes the following contributions:

1)  We leverage a classification technique in which we
designed text features to distinguish five review cate-
gories such as bug reports and new feature requests.

2)  We propose a pattern-based parsing technique which
can parse complex app review sentences, and extract
aspects and corresponding opinions.

3)  We design novel interactive visualizations to present
summaries efficiently for app developers and man-
agers.

4)  We conduct an empirical evaluation of SUR-Miner to
investigate its usefulness.

The rest of this paper is organized as follows. Section II
presents the related work. Section III presents the detailed
design of our framework. Section IV presents the evaluation.
Section V discusses the threats to validation, and Section VI
concludes the paper.

II. RELATED WORK
A. App Review Filtering

App review filtering has drawn increasing attention in the
software engineering community. Chen et al. [10] filter non-
informative reviews and rank the user review by significance.
Their framework trains a classifier and categorizes reviews
into two classes, namely, informative and non-informative. Fu
et al. [15] filter rating-inconsistent reviews (reviews that have
sentiments different from their rating) by a regression model
on the review vocabulary. These tools can partially select
informative reviews. However, they do not define clearly under
which circumstances reviews are informative since different
developers need different types of reviews [30], [31]. To a
further step of their work, we aim at distinguishing different
review purposes (categories) and selecting reviews from a
specific category to extract and summarize software aspects.

Recent work by Sorbo et al. [13] proposes a similar idea to
classify development emails according to their purposes. They
also design a classification approach using natural language
parsing techniques. While their technique could also be ap-
plied for app review classification, it does not support aspect
summarization within each category.

B. Aspect Extraction from App Reviews

Aspect extraction also has been widely investigated in
software engineering. Chen et al. [10] use LDA [6] to extract
topics of reviews. Hu et al. [19] propose a method for web re-
view mining. Their method extracts frequent words as aspects
and link corresponding adjective words as opinions. Fu [15]
address the problem of mining users’ negative feedback. They

apply LDA topic model to mine topics from negative feedback
and rank the summarized problems for each release. Galvis et
al. [16] mine requirement changes by adapting a topic model
named Aspect and Sentiment Unification Model (ASUM) [22].
They also extract common topics and present users’ opinions
toward those topics.

However, their approaches differ significantly from ours.
They applied frequent items mining or topic models which
are based on a bag-of-word assumption without considering
sentence structures and semantics. That means they can distin-
guish neither review categories (praising, feature requests, bug
reports, shortcomings) nor aspects and user opinions, which
could result in inaccuracy and confusion. For example, a topic
word “prediction” extracted by LDA may mean that users
appreciate the prediction feature or alternatively, users wish
for a new prediction feature. In such case, developers cannot
efficiently interpret the topics.

Recent work by Sarro et al. extracts features from app
descriptions using natural language processing [34]. Our work
differs to theirs in that we extract features from app reviews.
Besides, we aim at summarizing app features, while their goal
is to investigate feature lifecycles [34].

To our best knowledge, there is only one previous work that
are closely related to ours. Guzman and Maalej [17] proposed
to extract software features and analyze their sentiments.
Our work differs from theirs in three major aspects. First,
our approach aims not only to identify features, but also to
distinguish feature evaluations and feature requests. Second,
our approach can identify complex and novel features since
it parses review sentences with semantic patterns, while their
techniques are based on frequent item mining and topic model
as traditional approaches did. Finally, we propose interactive
visualizations to help app managers and developers grasp the
feature evaluations and sentiment trends.

C. Review Mining in Other Marketplaces

User review mining is also an attractive topic in other mar-
ketplaces (e.g., commodity goods, movies). Yatani et al. [37]
proposed a review summarization tool called ReviewSpotlight
which extracts aspect-opinion pairs by identifying adjective-
noun word pairs from review sentences. Huang et al. [20]
adopted a similar idea and designed Revminer - an extrac-
tive interface for summarizing restaurant reviews. Nichols et
al. [29] proposed ReCloud, which parses review sentences
with NLP techniques. Zhuang et al. [38] studied movie review
summarization. Their approach integrates multiple knowledge
including WordNet, statistical analysis and movie knowledge.

However, these techniques can hardly be applied to app re-
views directly. App reviews are quite different from reviews in
other marketplaces [10], [15]. They have different lexicons and
formats that existing tools can hardly parse. The ReviewSpot-
light [37] presents a word cloud by extracting adjective-noun
word pairs. Likewise, the RevMiner [20] extracts word pairs
using a bootstrapping algorithm. The ReCloud [29] takes
semantic into consideration, it also presents a word cloud but
with a spatial layout reflecting the NLP context. However, app
reviews cannot simply be represented by word clouds or word
pairs. For example:

case 1: “I love the fact that we can change themes”
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Fig. 1: Overview of the proposed SUR-Miner framework

The ReviewSpotlight cannot output anything since there is
no adjective. The RevMiner and ReCloud may present some
meaningless word pairs. In contrast, SUR-Miner can present
the correct pair (we can change themes, love) as it considers
semantics and app review patterns. In addition, app reviews
contain multiple purposes that target different developers [31].
None of existing tools can distinguish such categories. Con-
sider the following cases

case 2: “The blue screen after clicking the ‘ok’ button is

annoying.”

case 3: “A simple Ul would be better.”
From developers’ perspective, they are just a bug report and
a feature request and should not be considered as users’
opinions toward “screen” and “UI”. Such cases account for
a large proportion in app reviews [31]. While all these tools
still output word pairs(cloud) such as (button, annoying) and
(UI, simple), SUR-Miner can distinguish the above cases as
it leverages a classification technique.

III. SUR-MINER

This section introduces the generic architecture of SUR-
Miner.

As illustrated in Figure 1, our framework takes user reviews
including texts and ratings as inputs and outputs the main
opinions and sentiments toward different aspects of the app.
The whole procedure consists of six main steps: For raw
reviews that need to be summarized, we first split them into
sentences (step 1). Then, we classify each sentence into five
categories, namely, aspect evaluation, praises, feature requests,
bug reports and others (step 2). Then, we only select sentences
in the aspect evaluation category and filter out other types of
sentences. We then extract aspects and corresponding opinions
and sentiments from the set of “aspect evaluation” sentences
(step 3-4). The resulting aspect-opinion-sentiment pairs are
clustered and visualized with two interactive diagrams (step 5-
6). Each step is explained in detail herein below.

A. Step I - Preprocessing

The raw user review needs preprocessing. It often consists
of more than one sentences with different purposes. For
example, a raw review “The Ul is ugly. I want a beautiful UI”
consists of two sentences. The first sentence is an evaluation
of an aspect UI, while the second is a request for improvement
in the aspect Ul. They have different purposes and sentiments.
Therefore, it would be desirable to separate these sentences
for analysis. Furthermore, user reviews have many typos and

contractions which make it hard to understand the meaning
automatically.

To address these two issues, we split the raw review text
into sentences using the Stanford CoreNLP tool [26]. Each
review sentence is time stamped and assigned rating, to be the
same as in its raw review. We also correct common typos, con-
tractions and repetitions such as “U—you”, “coz—because”,
“&—and”, “Plz—Please”, “soooo—so” and ‘“thx—thanks”.
We collected 60 such typos and contractions, and replaced

them with regular expressions?.

B. Step 2 - Review Classification

As discussed in Section I, review sentences may have
different categories [31]. Different categories target different
tasks and developers [30]. It is very tedious and time con-
suming for developers to manually classify them and select
appropriate sentences for aspect evaluation. In the review
classification step, we aim to automatically classify and select
review sentences which contain aspect evaluation.

We define five review categories including aspect evalua-
tion, bug reports, feature requests, praise and others. Pagano
et al. found 17 categories (topics) of user reviews [31]. We use
top four categories from their taxonomy [31] and merge other
minor categories into an “others” category. Table I illustrates
the definitions and sample review sentences for each category.

To classify review sentences into the above mentioned
categories, we follow a supervised machine learning approach.
We first collect historical review sentences, extract their text
features, and manually label them according to the definitions
in Table 1. Then, we train a classifier using these text features
and labels. Finally, we execute the classifier on new review
instances to predict their categories.

We adopt a well-known classifier, Max Entropy which
has great performance on text classification [24], [28]. In the
following, we present the text features that we designed for
classification.

1) Text Feature Extraction: We extracted two dimensions
of text features: lexicon features and structural features.

Lexicons are important to characterize review categories
since different review categories may have significantly dif-
ferent lexicons. For example, “amazing” and “great” appear

2The full list of typos is at http://www.cse.ust.hk/~xguaa/srminer/appendix.
html
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TABLE I: Definition of Five Review Categories [31]

Category | Definition | Examples
Excellent!

Praise Expressing emotions without specific reasons I love it!
Amazing!

Aspect Evaluation Expressing opinions for specific aspects

The Ul is convenient.
I like the prediction text.

Bug Report Reporting bugs, glitches or problems

It always force closes when I click the “.com” button.

Feature Request Suggestions or new feature requests

It would be better if I could give opinion on it.
It’s a pity it doesn’t support Chinese.
I wish there was a “deny” button.

Others Other categories that are defined in [31]

I've been playing it for three years

frequently in praising reviews, while “bug” and “fix” are
representative words for bug reports. We choose character N-
Gram and trunk word as two lexicon features since they reflect
lexicons of different categories.

Character N-Gram Character N-Gram, an important lexical
representation, is a commonly used feature in text classifica-
tion [8], [9], [18], [23], [25]. It has also been found to be
effective in many applications such as malicious code detec-
tion [4] and duplicate bug report detection [36] in software
engineering. Character N-Gram features for a sentence are
all n consecutive letters in the tokens of that sentence. For
example, the 3-Grams for the sentence “The UI is OK” are
The, heU, eUl, Ul, Iis, isO, and sOK. We use 2-4 Grams for
classification.

Trunk Words We also propose trunk word as a lexicon feature.
We define trunk word as the word at the root of a semantic
dependence graph [12] which is introduced later in this section.
For example, the trunk word of the sentence “The graphics are
amazing” is “are”.

Sentence structures can also reflect text features as different
review categories may have different syntax and semantics. For
example, for aspect evaluations, users tend to use descriptive
syntax such as “The graphic (noun) is amazing (adjective)”,
while for feature request, users often use imperative sentences
such as “please add more themes” and “It could be better to
have more themes (noun)”.

We leverage three structural features: POS tags, parsing
tree, and semantic dependence graph.
POS tag Part Of Speech (POS) [11] is a widely used gram-
matical feature for texts. It indicates the property of each
word in a sentence. For example, POS tags for sentence
“The user interface is beautiful” are DT-NN-NN-VBZ-JJ in
sequence [11]. Here, the POS tag for the word is is VBZ,
which means is is a verb of 3rd person present singular. We
generate POS tags using the Stanford CoreNLP tools [3], [26]
and concatenate all POS tags together as a text feature.
Parsing Tree A parsing tree is a typical representation of
the grammatical structure of a sentence [35]. It shows how a
sentence is comprised. Each node represents a grammar unit,
and its children are subunits that it is comprised of. Figure 2
illustrates a parsing tree for a sample review sentence “The
user interface is not very elegant”, which is generated by the
Stanford Parser [3]. The label in each node denotes a POS
tag. This tree means that the sentence (ROOT) is constituted
by a noun phrase (NP) and a sub-sentence (S), where the noun
phrase is constituted with a determiner (DT) and two nouns
(NN).

In order to represent a parsing tree as a flat text feature, we

is not very elegant

Fig. 2: Parsing tree for the sentence: The user interface is not very
elegant.

Fig. 3: Semantic Dependence Graph for the sentence: The user
interface is not elegant.

traverse tree nodes in the breadth first order and select the first
five nodes. We concatenate the POS tags of these five nodes as
the text feature. For example, the feature for the parsing tree
in Figure 2 is “ROOT-NP-S-DT-NN-NN".

Semantic Dependence Graph (SDG) Semantic dependence
graph (SDG) [12] exhibits the semantic dependence among
words in one sentence. It is a directed graph [12]. Nodes in
the graph represent words and the corresponding POS tags.
Edges represent semantic relations between words (e.g., noun
subjection and adjective modifier). Each SDG has a root node
which has no incoming edges. Figure 3 illustrates an SDG of
a sample review sentence “The user interface is not elegant”,
which is generated by the Stanford Parser [3]. The root node is
the word elegant which is an adjective (noted as JJ). It has three
children: a noun subjection (nsubj) interface, a copula (cop)
is and a negation modifier (neg) not. The child interface also
has two children: a determiner (det) the and a noun compound
modifier (nn) user.

To convert an SDG into a flat text feature, we traverse its



nodes in breadth first order, then concatenate edges and POS
tags in the traversal. We ignore leaves that are not linked to
the root. For example, the feature for the SDG in Figure 3 is
“VBZ-nsubj-NN-cop-VBZ-neg-RB”.

C. Step 3 - Aspect-Opinion Extraction

Our next goal is to summarize users’ opinions toward cor-
responding aspects. To do that, we need to identify words that
express aspects and words that express opinions toward these
aspects. In this step, SUR-Miner extracts aspect-opinion pairs
(i.e., aspect and opinion words) from each review sentence
classified in the aspect evaluation category. For example, the
resulting aspect-opinion pairs for the review sentence “The
Prediction is accurate, but the auto-correct is annoying” are:
(prediction, accuracy) and {auto-correct, annoying).

In general, the state-of-the-art techniques extract aspects
by frequent item mining or by topic model which views user
reviews as bags of words [6], [10], [15]. Such an assumption
may be problematic for software reviews that exhibit multiple
purposes and sentiments.

As an empirical study indicates, software reviews have
quite monotonous patterns for different purposes [31]. There-
fore, it is possible to determine aspect-opinion pairs from the
sentence patterns directly. Based on this assumption, we design
a pattern-based parsing method which makes use of the syntax
and semantics of review sentences and parses aspects and
corresponding opinions from them directly. To do that, we first
apply an NLP parser to annotate a semantic dependence graph
(SDG) [12] for a review sentence. Then, we build a pattern-
based parser to extract aspect-opinion pairs from the SDG.

1) Pattern-based Parsing: Our pattern-based parser is im-
plemented as a sequence of cascading finite state machines [7].
The parser accepts a SDG and identifies aspect-opinion pairs
based on predefined semantic templates.

Table II lists some typical semantic templates we use. The
two letters at the beginning (e.g., JJ and NN) represent the
POS tag of the root. Words in the following round brackets
(e.g., have and like) represent root words. The children of the
root are listed in the square brackets as edge-POS pairs. For
example, the template in the first row means a root node with a
POS tag of JJ and two children: a noun subjection (nsubj) with
a POS tag of NN and a copula (cop) with a POS tag of VBZ.
We generated the templates by manually identifying aspect part
and opinion part from review sentences. We randomly selected
2,000 reviews sentences labeled as Aspect Evaluation except
those we later used for evaluating the accuracy. First, we went
through all these sentences and generated their SDGs. Then,
we associated each SDG with a template which denotes the
places of the aspect part and the opinion part in the SDG. We
selected all those templates which were associated with more
than 10 sentences in order to avoid accidental associations. We
identified 26 such templates to design the finite state machine?.

Then, given a new SDG instance, the parser travels from
the root to all other nodes, checking the nodes, edges, and the
corresponding children to determine the aspect and opinion

3The full list of templates is at http://www.cse.ust.hk/~xguaa/srminer/
appendix.html

words according to the templates. For example, given the SDG
in Figure 3, the parser checks the POS tag of the root. Since it
is an adjective (JJ) that matches the first and second templates
in Table II, it further checks whether it has three children:
a noun subjection (nsubj) with a POS tag of noun (NN), a
copula (cop) with a POS tag of VBZ, and a negation modifier
(neg) with a POS tag of RB. The second template is matched.
Then, it checks whether the first child has a child of noun
compound modifier (nn) with a POS tag of noun(NN). As the
second template is an absolute match with the sample SDG, the
parser recognizes the nsubj-NN node interface with its child
user as aspect words and the neg-RB node not together with
the root node elegant as opinion words.

D. Step 4 - Aspect Sentiment Analysis

In addition to opinions, a quantitative summarization of
users’ feeling towards each aspect may also be useful to
grasp users’ preferences. Users’ ratings can provide such
summarization objectively. However, an overall rating cannot
satisfactorily characterize users’ preferences for different as-
pects. For example, consider the review “The Ul is nice but the
sound sucks.” with a rating of 2 (out of 5). The user obviously
likes the aspect UI but dislikes the aspect sound. Therefore,
the actual ratings for both two aspects cannot be 2; it could
be 3 for Ul and 1 for sound.

At the fourth step, we apply sentiment analysis for each
review sentence and associate the sentiments to the correspond-
ing aspects with user ratings and a sentiment analysis tool.
We first apply a state-of-the-art sentiment analysis tool Deeply
Moving [1] to analyze sentiment for each review sentence. The
Deeply Moving produces sentiments in a 0 to 4 scale, where
4 represents strongly positive, 0 means strongly negative and
2 means neutral. Then, to improve accuracy, we adjust the
sentiments by user rating (1 to 5). Specifically, if the rating
for a whole review is 5 (strongly positive), we add 1 to the
sentiments of 0. If the rating is 1 (strongly negative), we minus
1 to the sentiments of 4.

For example, the following review has two sentences: The
interface is beautiful. I don’t like the theme. The sentiments for
the two sentences are 4 and 0, respectively. If the user rating
for the review is 5, we adjust the sentiment for the second
sentence to 1 (= 0+1). If the user rating is 1, we adjust the
sentiment for the first sentence to 3 (= 4-1).

E. Step 5 - Aspect Clustering and Summarization

At this step, we group aspect-opinion pairs with the same
aspects and summarize sentiments and typical opinions for
each aspect group.

To group the aspects, we first mine frequent items for all
aspect words, namely, aspect words in the extracted aspect-
opinion pairs. Then, we cluster aspect-opinion pairs with
common frequent items (words). For example, given that
auto correct is a frequent item in all aspect words, if there
are two aspect-opinion pairs which contain this item, they
will be clustered into one group. In particular, if a pair
has two or more frequent items that can be clustered into
more than two different groups, we cluster it into the group
with the highest frequency of items or words. For example,
a pair (background color, nice) can be grouped with both
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TABLE II: Examples of dependency relation templates

Templates | Sample Sentence | Aspect Words | Opinion Words
JJ[nsubj-NN,cop-VBZ] The Ul is beautiful! nsubj-NN 1
JJ[nsubj-NN[nn-NN],cop-VBZ,neg-RB] The user interface is not elegant. nn-NN + nsubj-NN neg-RB + JJ
NN[amod-JJ] nice UI! NN amod-JJ
VB(have)[nsubj-NN,nobj-NN] The frame has nice UI! nsubj-NN have + nobj-NN
VB(like)[nsubj(I),nobj-NN] 1 like the UI! nobj-NN like

(background, beautiful) and (color, disgusting). However, if
we have already known that the aspect background has a higher
frequency than that of color, we will group the first pair with
the second one instead of the third one. If there is no frequent
item in the two aspect-opinion pairs, we group them together
when they have common words in their aspects.

For each group, we select a group keyword as the word or
the item which has the largest frequency in that group. We also
calculate a group sentiment as the average adjusted sentiment
of aspect-opinion pairs in that group.

FE. Step 6 - Visualization

We designed two interactive diagrams, namely, Aspect Heat
Map and Aspect Trend Map, to illustrate the summaries.

The Aspect Heat Map demonstrates popular aspects that
users are concerned with. It aims to help developers and
managers grasp which parts (aspects) of the app are loved
or disliked by users. Figure 4 shows an example of the Aspect
Heat Map with each circle indicating an aspect. The larger the
circle is, the more popular and liked the aspect is. We define the
size of the circle as size = log(#comments) + sentiment.
The horizontal axis represents the number of comments, and
the vertical axis represents the adjusted rating. Therefore,
circles in the top right represent most popular and loved
aspects, and vice versa. To get insight into an aspect group,
developers can click each aspect (circle) to view the specific
comments with the top positive and top negative sentiments.
For each comment, the aspect words are underlined and the
opinion words are in bold.

The Aspect Trend Map demonstrates the sentiment trends
over time. Capturing user reactions is important for developers
to select and prioritize features [16], [34]. The Aspect Trend
Map aims to help developers assess whether their recent
changes affected users’ satisfaction. It also enables developers
to estimate and predict users’ preferences so that they can
improve parts of their product in the future. Figure 5 shows an
example of the diagram with each line indicating the sentiment
trend for a popular aspect. The horizontal axis represents date,
and the vertical axis represents user sentiments.

Both the Aspect Heat Map and Aspect Trend Map are
available on our project website at http://www.cse.ust.hk/
~xguaa/srminer/.

IV. EMPIRICAL EVALUATION

We evaluate our framework through three dimensions:
effectiveness, comparison and usefulness. To evaluate the ef-
fectiveness and advantages, we apply common measures in the
text mining literature and compare the results with state-of-the-
art methods. We also conduct developer surveys to evaluate the

TABLE III: Overview of App Subjects

Data Set | Category | Time Period
Swiftkey productivity 8.26.2014 -  9.10.2014
Camera360 photography 8242014 - 9.8.2014
Templerun2 game 8.30.2014 - 9.10.2014
‘WeChat social network 9.5.2014 - 9.11.2014
KakaoTalk communication 6.22.2014 - 9.12.2014
GooglePlayBooks books 12.16.2014 - 3.18.2015
SpotifyMusic music 3.8.2015 - 3.18.2015
YahooWeather weather 1.30.2015 - 3.18.2015
GoogleMap map 3.6.2015 - 3.20.2015
GoogleCalendar productivity 242015 - 3.20.2015
ESPN sports 9.19.2014 - 3.21.2015
TextPlus social 12.16.2014 - 3.21.2015
Duolingo education 352015 - 3.22.2015
Chasemobile finance 9.17.2014 - 3.23.2015
Medscape medical 1.72013 - 3.23.2015
Yelp food 12.8.2014 - 3.25.2015
IMDB entertainment 10.13.2014 - 3.29.2015

usefulness. Specifically, our evaluation addresses the following
research questions:

e RQ1 (effectiveness): How effectively can SUR-Miner
classify reviews, extract aspects and opinions, and
analyze sentiments for app reviews?

e RQ2 (comparison): How does the SUR-Miner com-
pare to state-of-the-art techniques for app review sum-
marization?

e  RQ3 (usefulness): How the summaries by SUR-Miner
useful for developers?

A. Data Collection

We choose 17 popular Android apps such as Swiftkey,
Camera360, WeChat and Templerun2 from Google Play as our
subjects. These apps cover 16 most popular categories such as
games, communication, books and music. We collected the
reviews roughly in the period from Aug, 2014 to Mar, 2015
using an open-source Android market API [2]. For each review,
we collect its timestamp, rating, title and content. Table III
shows the description of the subjects.

B. Effectiveness (RQI1)

In this section, we present our evaluation of SUR-Miner’s
effectiveness in each single step, namely, review classification,
aspect-opinion extraction, and sentiment analysis.

1) Review Classification: First, we evaluate SUR-Miner
on the review classification task. We sampled 2,000 review
sentences from each dataset and compared the predicted results
with golden standard labels. We manually labeled golden
standard classes according to the rules in Table I. To reduce
the labeling bias, two researchers separately applied the la-
beling rules to the 2,000 review sentences. Consensus labels
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were selected in the first iteration. For the disagreements, we
discussed and clarified our labeling rules and relabeled again.
A second iteration resulted in 100% agreement between the
two researchers.

We use Fl-score to measure the classification accuracy. The
F1-score is widely used in the text classification literature [16],
[38]. It is defined as follows

Pl 2 X precision X recall

)]

precision + recall
where the precision is the ratio of the number of instances

correctly classified as a class (TP) to the number of instances
classified as the class (TP+FP).

Tectsion = L 2)
b “TPYFP

The recall is the ratio of the number of instances correctly
classified as a class (TP) to the number of instances in the

class (TP+FN).
TP
ll= ——-— 3
reca TP PN 3
We performed a five-fold cross validation [38] in the data sets
100 times with each folder containing 400 review sentences.

Table IV shows the Fl-scores for different categories*.

Each column shows the Fl-scores of a review category in
all subjects. The last column averages the results for each
subject in all review categories, and the last row averages F1-
scores for each review category in all subjects. As indicated in
the table, the classification performance is reasonable (with an

4Full results including precisions and recalls are at http://www.cse.ust.hk/
~xguaa/srminer/appendix.html
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TABLE 1V: Fl-scores of review classification in all subjects

Category | Evaluation Praise Request Bug  Other | Overall
Swiftkey 0.72 0.87 0.78 0.58 0.86 0.76
Camera360 0.72 0.95 0.42 0.76 0.85 0.74
Templerun2 0.76 0.83 0.65 0.82 0.77 0.77
WeChat 0.70 0.93 0.50 0.76 0.89 0.76
KakaoTalk 0.76 0.96 0.66 0.47 0.91 0.75
GooglePlayBooks| 0.59 0.92 0.72 0.60 0.85 0.74
SpotifyMusic 0.68 0.94 0.54 0.57 0.87 0.72
YahooWeather 0.83 0.94 0.57 0.56 0.87 0.76
GoogleMap 0.73 0.88 0.60 0.76 0.84 0.76
GoogleCalendar 0.74 0.77 0.80 0.70 0.82 0.77
ESPN 0.77 0.80 0.57 0.77 0.83 0.75
TextPlus 0.65 0.94 0.41 0.72 0.88 0.72
Duolingo 0.79 0.95 0.67 0.50 0.88 0.76
Chasemobile 0.75 0.93 0.46 0.56 0.85 0.71
Medscape 0.84 0.94 0.63 0.71 0.88 0.8
Yelp 0.77 0.91 0.40 0.58 0.91 0.72
IMDB 0.71 0.90 0.60 0.64 0.84 0.74
Average | 0.74 0.90 0.59 0.65 0.86 | 075

TABLE V: Fl-scores for aspect-opinion extraction

Data Set Aspect  Opinion| Sentiment Sentiment
Positive Negative
Swiftkey 0.87 0.86 0.87 0.71
Camera360 0.87 0.87 0.89 0.53
Templerun2 0.95 0.93 0.91 0.79
‘WeChat 0.83 0.82 0.77 0.83
KakaoTalk 0.84 0.87 0.85 0.77
GooglePlayBooks 0.84 0.86 0.82 0.82
SpotifyMusic 0.84 0.86 0.83 0.62
YahooWeather 0.90 0.63 0.89 0.77
GoogleMap 0.86 0.84 0.88 0.88
GoogleCalendar 0.79 0.82 0.78 0.85
ESPN 0.80 0.78 0.69 0.83
TextPlus 0.84 0.85 0.80 0.77
Duolingo 0.86 0.85 0.93 0.51
Chasemobile 0.84 0.88 0.87 0.77
Medscape 0.89 0.90 0.86 0.60
Yelp 0.84 0.87 0.89 0.82
IMDB 0.84 0.87 0.86 0.86
Average [ 0.85 084 ] 085 0.75

average Fl-score of 0.75) as well as for the aspect evaluation
category (with an average Fl-score of 0.74). That means the
classification step can accurately provide different developers
with different types of review sentences. In particular, it
provides reliable review sentences for the aspect evaluation.
The Fl-scores for specific categories such as “bug” are not
good in some apps. We manually checked those reviews and
found that these apps received rare bug reports. The extremely
unbalanced data could be the main reason for these outliers.

2) Aspect-Opinion Extraction: To evaluate SUR-Miner’s
performance on aspect-opinion extraction, we follow the same
procedures as in the review classification experiment to check
if SUR-Miner correctly extracts aspects and corresponding
opinions from review sentences. For each subject, we sampled
2,000 review sentences and selected those in the Aspect
Evaluation category. We use F1-score to measure the accuracy
of aspect extraction and opinion extraction separately. In
particular, the number of true positives (TP) in Equation 1-
3 is the number of correctly extracted aspects or opinions; the
number of false positives (FP) means the number of mistakenly
extracted aspects or opinions; the number of false negatives
(FN) is defined as the number of aspects or opinions that have
not been extracted.

The results are shown in the first two columns in Table V.

As is indicated, both aspect extraction and opinion extraction
have reasonable accuracy, with average Fl-scores of 0.85
and 0.84, respectively*. The results suggest that the aspect
extraction step provides reliable aspects and opinions.

3) Sentiment Analysis: To evaluate the sentiment analysis
step, we also follow the same procedures as in the classification
and aspect extraction stages. For each subject, we sampled
2,000 review sentences and selected those in the Aspect
Evaluation category, and compared the sentiment for each
aspect-opinion pair with golden standard sentiment labels. To
simplify the estimation, we divided the sentiment scale (0-
4) into two polarities, that is, positive (3-4) and negative (0-
1) [32], and labeled them according the their polarities. We
labeled the golden standard sentiments manually as we did for
review classification.

We use Fl-score to measure the accuracy of each sentiment
category. In particular, the number of true positives (TP) in
Equation 1-3 is defined as the number of correctly classified
sentiments; the number of false positives (FP) means the num-
ber of misclassified sentiments; the number of false negative
(FN) means the number of sentiments that are not classified
in that category.

The results are shown in the last two columns in Table V.
As is indicated, both positive and negative sentiments have
acceptable accuracy, with average F1-scores of 0.85 and 0.75,
respectively*. The average Fl-score for both is 0.80. The
reason that the negative sentiment has a relatively low per-
formance in Camera360 and Duolingo could be that these two
apps received much more positive reviews so that the sentiment
categories become extremely unbalanced. The results suggest
that the sentiment analysis step produces reliable results.

SUR-Miner provides reliable results on review
classification, aspect-opinion extraction, and
sentiment analysis, with average Fl-scores of 0.75,
0.85 and 0.80, respectively.

C. Comparison (RQ2)

Our next evaluation aims to compare SUR-Miner with
state-of-the-art techniques with respect to final summaries.

1) Quantitative Comparison: We first compare the accura-
cy of SUR-Miner for aspect extraction with those of related
work: ReviewSpotlight [37] and Guzman’s method [17]. As
discussed in Section II, ReviewSpotlight is a review summa-
rization tool for general products by identifying noun-adjective
pairs (Section II-C), and Guzmans’ tool is the most related
work to ours that also extracts aspects from app user reviews
(Section II-B).

We run aspect extraction by simulating real world usage
scenarios. For each subject, we randomly select 400 review
sentences in all categories from the original dataset except
those for training classifiers. First, we run review classification
on these sentences. Then, we apply aspect extraction on
sentences that are classified as Aspect Evaluation. We compare
the extracted aspects with golden standard aspects that were
manually labeled. We use Fl-score to evaluate the accuracy
using the same definition in Section IV-B2.



TABLE VI: Comparison of Aspect Extraction Accuracy
with Related Works

Metric SUR-Miner ReviewSpotlight| Guzman and
Maalej [17]
Fl-score | 0.81 | 0.56 | 055

Table VI shows the average Fl-scores of three approaches
in all subjects. We reproduced ReviewSpotlight and applied it
for extracting app aspects. The result of Guzmans’ approach is
excerpted from their paper [17]. As we can see, the Fl-score
for SUR-Miner is 0.81, significantly greater than those of the
ReviewSpotlight (0.56) and Guzman’s tool (0.55).

To investigate the reasons for these results, we manually
checked the results of ReviewSpotlight. We found that without
distinguishing review categories, it tends to extract aspects
for reviews in other categories such as aspect requests and
bug reports. For example, consider the review “I hate that
you can’t use offline dictionary” which requires for a new
aspect offline dictionary. The ReviewSpotlight just outputs
(dictionary, offline) which is meaningless while SUR-Miner
can filter such review from aspect evaluation since it talks
about a nonexistent aspect.

Another shortcoming of these related approaches is that,
they cannot identify complex phrases as they simply consider
frequent items or noun-adjective pairs as aspects. For example,
for the review “Also, love the way it auto ads reminders” , the
ReviewSpotlight simply outputs (ads, auto) while SUR-Miner
outputs ( the way it auto ads reminers, love).

It is also interesting to see that even though both the
classification and extraction stages have mistakes, combining
them does not result in worse accuracy. The classification step
has an Fl1-score of 0.74. The aspect extraction step has an F1-
score of 0.85 (Section IV-B). However, when extracting aspects
from the outputs of classification stage, the final Fl-score is
0.81, even greater than that in the classification stage. By
manually checking the extracted aspects, we found that though
some reviews were misclassified during the classification stage,
the aspect extraction stage can still “re-correct” them since
a misclassified review may not be parsed by our semantic
patterns. For example, consider a misclassified review “No
public transportation navigation!” which requires a new aspect
but was misclassified as Aspect Evaluation in the classification
stage. Nevertheless, SUR-Miner still cannot recognize any
aspect since there is no semantic pattern to parse this review.

2) Qualitative Comparison: Topic models such as LDA are
widely used by most state-of-the-art app review summarization
tools [10], [15], [17]. To investigate the advantages of SUR-
Miner over these topic-based techniques, we qualitatively com-
pare the extracted aspects by SUR-Miner with topics extracted
by topic models.

Table VIII compares the top five aspects we extracted with
the top five topics by AR-Miner (a state-of-the-art review
summarization tool that applies EMNB-LDA topic model) [10]
in the Swiftkey subject. We collected data in the same period
from Google Play as AR-Miner did. We have two observations:
1) SUR-Miner can distinguish different review purposes. For
example, opinions extracted by SUR-Miner are aspect eval-
uations except some noises, while top words by LDA (AR-
Miner) are miscellaneous. For example, if a manager would

TABLE VIII: Comparison of topics (by LDA) and aspects (by SUR-
Miner)

(a) Topics and typical words by AR-Miner (LDA) [10]. The first
row lists the top 5 topics. The following 4 rows list the top 5 words
for each topic

Topics ‘ theme Chinese  jelly bean predict space
more languag bean word space

theme chines jelli predict period

Keywords wish need galaxi text email
love wait note complet enter

custom user keyboard auto insert

(b) Aspects and opinions extracted by SUR-Miner. The first
row lists top five aspects with most comments. The following
three rows show opinions with top positive sentiments while
the last two rows show opinions with top negative sentiments

Aspects  predictions. auto-correct. words theme key
amazing flawless love  great best
excellent good like love like

Opinions amazing amazing like over top
accurate stubborn  a pain ugly breaker

‘ hate nightmare not-need just obnoxious

like to know users’ evaluations on the aspect prediction, SUR-
Miner can provide users’ opinions such as excellent, accurate,
hate while AR-Miner (LDA) cannot provide such information;
2) SUR-Miner can distinguish users’ sentiments while AR-
Miner (LDA) cannot. For example, managers and developers
can find both positive and negative sentiments by SUR-Miner
but cannot tell whether user like or dislike the aspect prediction
by LDA.

Overall, SUR-Miner produces much clearer summaries
in distinguishing review purposes and sentiments than LDA
models.

SUR-Miner produces much more accurate and
clearer summaries than state-of-the-art methods.

D. Usefulness (RQ3)

As the usefulness evaluation may be subjective, we con-
sulted developers to assess the usefulness of SUR-Miner. We
applied SUR-Miner to the latest user reviews of 17 popular
Android apps such as Swiftkey, Camera360, WeChat and
Templerun2. We presented the visualized summaries as demos
in our website and asked the questions shown in Table VII to
developers. The two questions are related to the two diagrams
respectively. We provided five options for each of them (5
strongly agree, 4 agree, 3 neither, 2 disagree and 1 strongly
disagree). The number of choices to each option was also listed
for each question.

We sent invitation mails to developers of the selected
apps, posted our website to Android developer communities
in Google+, and also invited developers from IT companies
such as Samsung, Tencent and Baidu for feedback.

Developers showed great interest in our SUR-Miner. As
indicated in Table VII, of all 32 answers received, 28 of
them (88%) agreed that our tool helps developers. Only two
held conservative opinions (6.3%) and two (6.3%) disagreed.
Figure 6 shows the box plot statistics of developer feedback.



TABLE VII: Questions in the developer survey and results

. Strongly . . Strongly
Questions Disagree Disagree  Neither  Agree Agree Total
Q1. Do you think Figure 1 “Aspect Heat Map” is useful to understand users

) 0 1 0 7 8 22
preferences for aspects?
Q2. Do you think Figure 2. “Aspect Trend Map” helps developers to 0 | 5 5 3 »

understand the users preferences trend over time?

Heat Map X L4
Trend Map |
X F---==" g
1 2 3 4 5

Strongly disagree Strongly agree

Fig. 6: Developer Rating on Usefulness

We quantize the answers to ratings from 1 to 5. Each box
shows answers for a question. As the results indicate, answers
to both questions have average ratings much greater than 3.
That means developers agree the usefulness of SUR-Miner in
general.

In addition, we received the following encouraging com-
ments from developers:

“This is a great project. The visualization data impresses me
much!”

“I think if possible, we would like to work with these researcher-
s. I really like the performance of your sentiment classifier.”

“The provided visualized information serves as quite clear way
to get insight of products including advantages and disadvan-
tages. Analyzing large scale user comments calls for great
human efforts. Such project makes the understanding as well
as iteration of products fast.”

These comments indicate that developers appreciate our tool
to help grasp users’ opinions toward different aspects.

Developers feedback indicates our SUR-Miner
helps developers grasp users’ opinions and
sentiments in practice.

V. THREATS TO VALIDITY

We have identified the following threats to validity:

Subjects are all free Android apps. All projects investigated
in this paper are free Android apps. Hence, they might not
be representative of charged apps and apps in other markets
(e.g., AppStore) [27]. Commercial apps may have different
review patterns. In the future, we will mitigate this threat by
investigating user reviews of commercial apps and apps in
other markets.
Ground truth labels were judged by two people. As the
golden standard labels require large human efforts, they were
judged by only two people in our experiments. They could be
biased from real app developers. For mitigating this threat we
presented final results to developers and made sure that they
were satisfied with the accuracy. In the future, we will further
reduce this threat by inviting more developers for labeling.

VI. CONCLUSION

We proposed SUR-Miner for effective and automatic user
review summarization. The summaries from SUR-Miner pro-
vide a desirable answer to the important question “What part
of your apps are loved by users” for developers.

Our evaluation results show that SUR-Miner provides
reliable results, with average Fl-scores of 0.75, 0.85 and
0.80 for review classification, aspect-opinion extraction and
sentiment analysis, respectively. The final aspects from SUR-
Miner are significantly more accurate and clearer than state-
of-the-art techniques, with an Fl-score of 0.81, greater than
that of ReviewSpotlight (0.56) and Guzmans’ method (0.55).
Feedback from app developers is also very encouraging, and
88% answers from developers agree with the usefulness of
SUR-Miner.

In the future, we will summarize other review categories
such as feature requests. In addition, we will propose tech-
niques to summarize other software text data such as code
comments and bug reports.
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