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ABSTRACT
Code language models such as CodeT5 and CodeLlama have demon-
strated substantial achievement in code comprehension. While the
majority of research efforts have focused on improving model ar-
chitectures and training processes, we find that the current bench-
marks used for evaluating code comprehension models are con-
fined to high-readability code, regardless of the popularity of low-
readability code in reality. As such, they are inadequate to demon-
strate the full spectrum of the model’s ability, particularly the ro-
bustness to varying readability degrees. In this paper, we analyze
the robustness of code summarization models to code with vary-
ing readability, including seven obfuscated datasets derived from
existing benchmarks. Our findings indicate that current code sum-
marization models are vulnerable to code with poor readability. In
particular, their performance predominantly depends on seman-
tic cues within the code, often neglecting the syntactic aspects.
Existing benchmarks are biased toward evaluating semantic fea-
tures, thereby overlooking the models’ ability to understand non-
sensitive syntactic features. Based on the findings, we present Poor-
CodeSumEval, a new evaluation benchmark on code summarization
tasks. PoorCodeSumEval innovatively introduces readability into
the testing process, considering semantic, syntactic, and their cross-
obfuscation, thereby providing a more comprehensive and rigorous
evaluation of code summarization models. Our studies also provide
more insightful suggestions for future research, such as construct-
ing multi-readability benchmarks to evaluate the robustness of
models on poor-readability code, proposing readability-awareness
metrics, and automatic methods for code data cleaning and normal-
ization.
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Figure 1: Fine-grained evaluation of CodeT5 across various
readability in the code summarization task. The seven di-
mensions represent seven obfuscated datasets derived from
existing benchmarks. The values presented in the figure cor-
respond to the percentage of results obtained from each per-
turbed dataset relative to the results from the original bench-
mark. This figure allows us to quantify how changes in code
readability affect the performance of CodeT5.

1 INTRODUCTION
Efficient program comprehension is crucial for developers and sig-
nificantly enhances software development productivity. Code sum-
marization, a process that generates natural language descriptions
for source code, has witnessed substantial progress in recent years,
primarily driven by the development of pre-trained language mod-
els such as CodeBERT, CodeT5, and CodeLlama [8, 26, 39].

While the majority of research efforts have focused on improv-
ing model architectures and training methodologies, it is apparent
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that the evaluation of code summarization models faces significant
limitations. First, the test sets used for evaluating code summariza-
tion models are confined to high-readability code, characterized
by well-structured syntax, meaningful variable names, and con-
ventional coding styles. However, real-world software engineering
often involves code with poor readability, as observed in various
studies [1, 25, 31]. Unlike natural languages, source code exhibits
varying formats and styles due to programmers adhering to dif-
ferent coding conventions and personal preferences. For instance,
in reverse engineering, developers must comprehend decompiled
code, which may lack meaningful original identifiers. Addition-
ally, in the context of security, malicious code may be intentionally
obfuscated by rearranging identifiers and structures to impede read-
ability. To effectively address such challenges, it is crucial to assess
the robustness of existing code summarization models against ob-
fuscated code, which often features nonsense identifiers and dead
code [1, 25, 31].

Second, and more critically, the current evaluation processes
rely on single, holistic metrics, offering only a coarse-grained as-
sessment of text similarity on a specific task. Consequently, these
metrics fail to provide a comprehensive and intuitive demonstration
of the fine-grained capabilities of code languagemodels, particularly
the model’s robustness to varying readability. Figure 1 illustrates
the robustness of CodeT5 in seven obfuscated test sets with dif-
ferent readability. The results indicate that current code language
models are sensitive to various obfuscations.

In this paper, we provide a thorough evaluation of large language
models in understanding low-readability code. We select a code
benchmark with human-graded readability scores and partition
it into low- and high-readability groups. We compare the perfor-
mance of GPT-4o between the two groups. Our study indicates that
readability has an evident impact on code comprehension by large
language models. Particularly, the current LLMs show a strong
vulnerability to poor readability code.

Having recognized this phenomenon, we further investigate
what readability factors the current code LMs are most vulnerable
to. We study finer-grained readability factors that target both se-
mantics (such as identifiers and function names) and syntax (such as
branches and symbols). For each factor, we gain different readability
degrees through code obfuscation, i.e., perturbating code to reduce
the readability while maintaining the semantics. We obfuscate the
three primary benchmarks (TL-CodeSum [13], Deepcom [12], and
CodeSearchNet [14]) into seven low-readability datasets according
to widely used perturbation rules: Identifier Order Erosion (IOE),
Identifier Random Shuffling (IRS), Identifier High-Frequency Re-
placement (IHR), Function Name Erosion (FNE), Operators and
Operands Swap (OOS), Dead Branch Injection (DBI), and High-
Frequency Variable Injection (HVI). Using the obfuscated datasets,
we gain insights into the model’s vulnerability to various perturba-
tions. Our findings reveal that the current code summarization mod-
els rely heavily on the semantic cues of the code while struggling
with comprehending structural features. Moreover, existing bench-
marks are biased toward evaluating semantic features, thereby
overlooking the models’ ability to understand syntactic features.

Based on the findings, we propose a new cross-evaluationmethod-
ology to assess the comprehensive robustness of code summariza-
tion models. We create balanced-sensitivity datasets by combining

two distinct sets of perturbation rules: one focusing on semantic
perturbations and the other on syntactic perturbations. We select
a semantic perturbation rule that has the maximal impact on the
model performance and pairs it with one of the syntax perturbation
rules. This allows the evaluation to minimize the impact of sensitive
aspects while assessing the comprehensive ability of models on
low-sensitive code features. We use this methodology to create a
new benchmark named PoorCodeSumEval. Finally, we scrutinize
the comprehensive ability of code summarization models using the
results of both the robust evaluation and cross-evaluation of the
balanced-sensitivity datasets.

The primary contributions of this paper are summarized as fol-
lows:

• We conduct an empirical study of the robustness of state-of-
the-art code summarization models to poor readability code.
Our results shed light on the comprehensive evaluation of
code language models on varying readability features.

• We create an evaluation workflow to assess the compre-
hensive capability of code summarization models, taking
into account their semantic, syntactic, and joint robustness.
Our approach provides a comprehensive assessment of the
robustness and adaptability of these models in real-world
scenarios where code readability can significantly differ.

• We introduce a new benchmark dataset for a comprehensive
evaluation of the code summarization models. To our knowl-
edge, it is the first benchmark that can evaluate the model
from multiple readability degrees using obfuscated code.

2 BACKGROUND AND PROBLEM
FORMULATION

This section introduces the literature on code summarization and
motivates our research questions.

2.1 Code Summarization
Code summarization refers to generating natural language com-
ments for a given code snippet [15]. It is usually formulated as a
machine translation task and is modeled by the standard encoder-
decoder framework [15]. Given the input code 𝑥 = [𝑥1,...,𝑥𝑁 ] with
𝑁 tokens, a neural network is trained to generate the correspond-
ing comment 𝑦 = [𝑦1,...,𝑦𝑇 ] token by token based on the encoded
vectors. The model can be implemented as a Transformer stacked
by 𝐿 self-attention layers [36]. Recently, large language models
such as CodeLlama [26] have pushed the performance of code sum-
marization to soaring heights.

2.2 Evaluation for Code Summarization Models
Code summarization can generally be considered a translation
task. Therefore, the current evaluation methodology adheres to the
conventional evaluation paradigm for translation: given code in a
test set, the model generates natural language summaries, which
are then compared against the ground-truth references in the test
set. Performance is measured using holistic metrics such as BLEU
[20], BERTScore [43], and ROUGE [19], which account for text
similarities.
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Although widely used, the conventional evaluation methodology
has its limitations. Previous studies have shown that the perfor-
mance of code summarization models is significantly influenced by
the quality of the dataset [31]. Denoising the dataset by removing
noisy instances can lead to substantial improvements in the models’
capabilities [38].

2.3 Research Questions
Our hypothesis is that the readability of code could have effect to
the comprehension by large language models. This leads to several
research questions:

• RQ1: How effective are state-of-the-art code summarization
models on poor-readability code? We investigate whether
poor readability has a significant impact on the performance
of code summarizationmodels.We choose a code dataset that
has been manually labeled with readability scores [3, 29]. We
partition the dataset into high- and low-readability groups
and compare the performance of code summarizationmodels
between the two groups.

• RQ2: How do changes in code readability affect the perfor-
mance of code summarization models? Having learned that
existing code summarization models are vulnerable to poor
readability code, we want to know how different readabil-
ity factors impact the model’s performance. We perform an
in-depth analysis of the robustness of code comprehension
models in terms of different readability factors, including:
1) Semantic cues that characterize the intent of the code,
such as function signatures, and variable names. Previous
research has shown that function names play a dominant
role in code comprehension [6, 44], and 2) Structural features
such as keywords, operators, and syntactic symbols. We ex-
tend the primary benchmarks into seven obfuscated datasets
via code perturbations. We compare the performance and
robustness along the seven dimensionalities.

• RQ3: How to fully assess the capability and robustness of a
code summarization model? Having identified that current
code language models are sensitive to semantic features of
code, we encounter a new challenge: the sensitive features
may obscure the effects of non-sensitive ones when testing
a model’s capabilities. For instance, if a model heavily relies
on semantic features such as identifiers, it becomes difficult
to discern the impact of syntactic perturbations when the
input code is rich in semantic information. To address this is-
sue and evaluate models’ ability to recognize low-sensitivity
aspects of code, we propose cross-obfuscation benchmarks.
These benchmarks aim to reduce the dominance of highly
sensitive aspects by perturbing the original datasets using
a combination of two perturbation rules: one from seman-
tic perturbation and one from syntactic perturbation. By
summing up the results of both robust evaluation and cross-
obfuscation evaluation, we can gain more insights into the
model’s ability including performance, capacity, and robust-
ness.

3 RQ1: EFFECT OF LOW-READABILITY CODE
In this section, we investigate the overall difference between low-
and high-readability code in real-world code summarization.

3.1 Methodology
We test LLMs on a readability-annotated code dataset introduced
by previous work [3, 29]. The dataset consists of 200 Java snip-
pets, each assigned a readability score (ranging from 1 to 5) manu-
ally rated by nine developers. Out of the 200 snippets, 45 include
corresponding documentation comments that serve as reference
summaries for evaluating code summarization models. We divided
the 45 snippets into two groups based on their readability scores:
a high-readability group comprising 23 samples with the highest
scores and a low-readability group consisting of 22 samples with
the lowest readability scores. For each snippet, the readability score
was calculated as the average of all developers’ assessments.

We use GPT-4o1 as the baseline model. GPT-4o is a cutting-edge
commercial LLM that offers an accessible interface (i.e., prompting
through a web page), without requiring extensive technical modifi-
cations. This allows us to capture the general distinctions between
low- and high-readability code in real-world code summarization.
Following previous work on ChatGPT for code summarization [33],
we use the prompt "Please generate a short comment in one sen-
tence for the following function:<code>" to elicit GPT-4o to output
the code summary.

3.2 Evaluation Metrics
We evaluate the model performance using two metrics, including
the smoothed BLEU-4 score [20] and the BERTScore [43], which
are the most widely used metrics for shot-text summarization [12,
22, 35].

BLEU [20] is a standard algorithm for evaluating machine trans-
lations. It is computed as the ratio of n-gram tokens from the can-
didates that also appear in the references, with a penalty for too
short length.

BERTScore [43] evaluates the sentence-level similarity of the
candidate sentence to its reference by leveraging BERT’s contex-
tual embeddings, thereby addressing the shortcomings of earlier
approaches and achieving a higher correlation with human judg-
ment [43]. BERTScore has demonstrated exceptional performance
across various NLP tasks [24, 35], establishing a new state-of-the-
art benchmark in the field. BERTScores often lie in a small range.
Following the general practice, we rescale them with baselines to
fall in [0, 1]2.

3.3 Results
Table 1 summarizes the performance of GPT-4o in both readability
groups. There is a clear discrepancy in performance between the
two groups. The higher the readability, the greater the BLEU and
BERTScore that the model achieves. We particularly notice that the
BLEU score drops from 8.12 to 6.32 in the high- and low-readability
groups, respectively. Additionally, all comparisons gain statistical
significance. The results indicate that readability has a strong impact
on the code comprehension performance by language models.
1https://chatgpt.com
2Rescaling BERTScore with baselines

https://chatgpt.com/
https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_baseline.md
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Table 1: Code summarization performance of GPT-4o on
codes with different readability.

Group Readability BLEU BERTScore

low-readability 3.44 6.32 18.25
high-readability 4.28 8.12 19.78
p-value* <0.0001 <0.01 <0.04 (0.0383)

*p-value is calculated with pairwise 2-sample Wilcoxon Signed rank
test between the two groups. We repeat the comparison experiments 6

times.

Answer to RQ1: Readability has a strong impact on the code
summarization performance. Existing code summarization mod-
els exhibit a strong vulnerability to poor-readability code.

4 RQ2: FINE-GRAINED SENSITIVITY ON
VARYING READABILITY FACTORS

In the previous section, we examined the overall impact of read-
ability in code summarization models. To further understand the
models’ robustness on varying readability, we perform an in-depth
analysis of the specific code features to which these models are
sensitive.

4.1 Methodology
To gain more insights into the sensitivity of code summarization
models across different readability features, we extend existing code
summarization benchmarks to varying readability through code
obfuscation. Code obfuscation involves perturbating source code in
a way that makes it difficult for humans to understand while retain-
ing its original functionality and informational content. It is widely
used in software development for various purposes, such as pro-
tecting intellectual property, preventing reverse engineering, and
enhancing security. By incorporating obfuscated code into existing
benchmarks, we aim to evaluate how robust code summarization
models are on varying readability while maintaining their ability
in code comprehension.

4.1.1 Primary Benchmarks. We initially select three primary bench-
marks for evaluating code summarization models, including TL-
CodeSum3[13], DeepCom4 [12], and CodeSearchNet5[14].
TL-CodeSum [13] released a dataset that includes 87,136 (function,
summary) pairs extracted from Java projects created from 2015 to
2016 with at least 20 stars.
DeepCom [12] released a dataset that includes 588,108 Java meth-
ods with documentation. The dataset was originally collected from
9,714 GitHub projects. It takes the first sentence of the documenta-
tion comment as the summary of each Java method.
CodeSearchNet [14] is a well-formatted code language dataset.
The dataset involves a large number of functions along with their
documentation or comments written in Go, Java, JavaScript, PHP,
Python, and Ruby. Our study requires extensive perturbations on
the original code. Perturbating all languages would be an enormous
3https://github.com/xing-hu/TL-CodeSum
4https://github.com/xing-hu/DeepCom
5https://github.com/github/CodeSearchNet

Table 2: Number of test functions on the original dataset in
terms of different languages.

Dataset Language # of Functions

TL-CodeSum Java 8,714

DeepCom Java 58,811

CodeSearchNet
Java 10,955

Python 14,918
Go 8,122

workload. We selected Java, Python, and Go, the most popular
languages from CodeSearchNet for efficient analysis.

The statistics of the benchmarks are presented in Table 2. As an
evaluation benchmark, we only use their test sets in our experi-
ments.

4.1.2 Creating Obfuscated Benchmarks. Based on the primary bench-
marks, we construct obfuscated benchmarks that are more chal-
lenging for models to summarize. Previous research has shown
that code readability relies on two channels of features: syntactic
and textual [27, 29]. The former concerns more about the struc-
ture while the latter concerns the semantic cues (e.g., identifiers,
keywords, and comments) used by humans for code comprehen-
sion. We hereby construct obfuscated code by perturbing both the
semantics and syntax of the primary datasets. For semantic per-
turbation, we perturb the identifiers and function names of the
original code. For syntactic perturbation, we use perturb operators,
condition statements, and variable declarations. We did not perturb
the loop statements like other work [4] because the for and while
loops cannot completely be converted to each other across several
programming languages. Besides, they do not account for a high
proportion of the primary datasets. In addition, we consider the
inclusiveness of the evaluation system for programming languages,
for example, there is no "while" in Go.

Overall, we employ seven rules for constructing obfuscated code:
• Identifier Ordered Erosion (IOE) [7, 16, 40], replace identi-
fiers in the code with ordered symbols such as "v0" and "v1",
and modify the replaced identifier in the summary accord-
ingly. This perturbation rule aims to erode semantic cues in
the original identifiers.

• Identifier High-frequency Replacement (IHR) derived
from identifier mangling [2, 16], replace identifiers with fre-
quent tokens, and modify the replaced identifier in the cor-
responding summary. Compared to IOE, IHR produces code
that is closer to the original data, as it only introduces fre-
quent tokens in the training corpus instead of rare symbols
adopted by IOE.

• Identifier Shuffling (IS) [2, 16], randomly shuffles identi-
fiers within the same code snippets and replaces the new
identifier in the summary accordingly. This rule perturbs
the code sequence while preserving the semantic cues of the
original code.

• Function Name Erosion (FNE) [5, 9, 10], replaces function
names with symbols such as "v0", "v1" and modify all their
occurrence in the corresponding summary. Function names

https://github.com/xing-hu/TL-CodeSum
https://github.com/xing-hu/DeepCom
https://github.com/github/CodeSearchNet
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1    int findMaxByFor(int[] arr) {
2        int max = 0;
3    for (int item : arr) {
4    if (item > max) {
5    max = item;
6    }
7    }
8    return max;
9    }

(a) Original Code

1    int v0(int[] v1) {
2        int v2 = 0;
3    for (int v3 : v1) {
4    if (v3 > v2) {
5    v2 = v3;
6    }
7    }
8    return v2;
9    }

(b) Identifier Ordered Erosion

1    int value(int[] i) {
2        int name = 0;
3   for (int result : i) {
4   if (result > name) {
5   name = result;
6    }
7    }
8   return name;
9    }

(c) Identifier High-frequency Replace-
ment

1    int arr(int[] max) {
2        int item = 0;
3    for (int findMaxByFor:max){
4   if (findMaxByFor>item){
5   item = findMaxByFor;
6      }
7      }
8      return item;
9    }

(d) Identifier Shuffling

1    int v0(int[] arr) {
2        int max = 0;
3    for (int item : arr) {
4    if (item > max) {
5    max = item;
6    }
7    }
8    return max;
9    }

(e) Function Name Erosion

1    int findMaxByFor(int[] arr) {
2        int max = 0;
3    for (int item : arr) {
4    if (max < item) {
5    max = item;
6    }
7    }
8    return max;
9    }

(f) Operators & Operands Swap

1    int findMaxByFor(int[] arr) {
2 int max = 0;
3        int i = 2;
4        int result = 0;
5        int value = 0;
6    for (int item : arr) {
7    …}
8    return max;
9   }

(g) High-frequency Variable Injection

1    int findMaxByFor(int[] arr) {
2        if (false) {
3            return 
Math.sin(Math.PI*x)/(Math.PI*x);
4        } else {
5            int max = 0;
6            …
7            return max;
8        }
9    }

(h) Dead Branch Injection

Figure 2: Illustration of the seven perturbation rules. The perturbed parts are marked in green

have always been considered the most critical informative
in code comprehension [6, 44]. By erasing semantics in the
function name, this rule encourages the model to learn the
importance of different identifiers in code.

• Operators and Operands Swap (OOS) [4], inverses the
operators of binary and logical operations in the code and
swap the corresponding operands to maintain the semantic.
For inequalities in logical operations, we swap "<" and ">"
(including "<=" and ">=") and their corresponding operands.
For operators such as "+", "*", "==", "!=" or "<>", we only swap
the operands.

• Dead Branch Injection (DBI) derived from code injection
techniques [4, 7], this rule inserts condition statements into
the code that do not affect the original program execution.
Specifically, we inject a dead branch condition statement
at the beginning of the function body, placing the original
function body into the true branch and inserting unrelated
code into the false branch. Condition statements are a funda-
mental code syntax feature, and this rule helps in evaluating
the impact of such perturbations on the model.

• High-frequency Variable Injection (HVI) derived from
code injection techniques [4, 7], this rule inserts variable
declarations into the code that do not affect the original
program execution.

Figure 2 illustrates examples of the seven perturbation rules. We
implemented these perturbations by adopting existing obfuscation
techniques. For example, we adopt NatGen [4] for DBI and HVI.
The scripts for the seven perturbations can be found in our source
code.

It is important to note that to maintain the readability of the
perturbed code and prevent semantic deviations from the original
code, we treat function names, parameters, and local variable names
as identifiers. This implies that external APIs within the function

body and global variables declared outside the function body will
be retained.

Finally, by applying the seven perturbation rules to the original
benchmarks, we obtain seven obfuscated benchmarks that reflect
varying readability features. We proceed to evaluate code summa-
rization models on these benchmarks. By analyzing the sensitivity
of specific perturbations, we can identify the most crucial features
of the code that influence the model’s performance. For instance,
if certain perturbations notably affect the model’s performance, it
suggests that the corresponding features (e.g., function name) are
critical to the code summarization models. This approach also helps
determine whether the model is more sensitive toward semantics
or syntax within the code. By combining different perturbation
rules, we can also analyze the more comprehensive capability of
code language models.

4.2 Studied Models
In RQ2, we aim to perform a more in-depth analysis of the subtle
differences across different readability dimensions and obfuscation
rules. We opt for open-source models with various sizes that allow
for both fine-tuning and zero-shot modes. This choice enables us
to design more sophisticated prompts and perform a detailed, gran-
ular, and computationally efficient analysis of large-scale code data.
We select three code comprehension models as our investigated
models: CodeBERT, CodeT5, and CodeLlama. They stand as the
most representative models for code summarization.

CodeBERT [8] is an encoder-only model based on RoBERTa [21].
The model has been pre-trained on both natural and programming
languages using two self-supervised objectives, namely, masked
language model and replaced token detection.

CodeT5 [39] is a code language model based on the encoder-
decoder architecture. CodeT5 extends T5 by adding pre-training
tasks to capture identifier semantics. Moreover, a bimodal dual
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generation task is proposed to enhance the decoder for genera-
tion tasks. We directly run the pre-trained checkpoint6 for code
summarization.

CodeLlama-7B [26] stands as the state-of-the-art LLM for code
generation and comprehension. It is built on top of Llama 2 [34] and
was pre-trained in Python. CodeLlama can generate both code and
natural language about code. We generate summaries for Python
using the infilling method recommended in the paper [26]. The
infilling method replaces the documentation comment of the func-
tion body with a special tag FILL_ME, and takes it as input to the
model7. The model will generate summaries to fill in the special
tag. Since the content generated by CodeLlama is too long, we only
select the first line as the final summary. CodeLlama has not been
pre-trained in Go and Java. There is no officially recommended
inference method in these languages. Therefore, for Go and Java,
we generate summaries using the method in bigcode-evaluation-
harness8 which results in reasonable performance. Specifically, we
append a prompt Please fill this sentence “The goal of
this function is to” in 12 words: at the end of the code to
guide the model to output the code summary.

We trained all code language models based on the released pre-
trained checkpoint on huggingface91011. All parameters were con-
sistent with the open-source documents provided in the original
papers of each model. We trained and evaluated all models on a
GPU machine with Nivida Tesla V100. The hyperparameters and
specifications for all language models are provided in Table 3.

Table 3: Hyperparameters of baseline models.

CodeBERT CodeT5 CodeLlama

Transformer layers 12 24 32
Max seq length 512 512 2048
Embedding size 768 768 4096
Attention head 12 12 32
Vocabulary size 50,265 32,100 32,000
# of parameters 125M 220M 7B

4.3 Results
Table 4 compares the results of three code language models on both
the primary and obfuscated test sets. Generally, all models exhibit
a decline in BLEU and BERTScore on the perturbed datasets. The
findings from BERTScore closely align with those from BLEU. The
results confirm our conclusion that existing code summarization
models are vulnerable to poor code readability.

Comparing the perturbated datasets. Figure 1 illustrates the ro-
bustness of CodeT5 to different readability factors in seven obfus-
cated test sets. Across all perturbations, IOE and IHR have the most
significant impact on the model performance. For example, IOE
drops the BLEU scores obtained by CodeT5 by 5.15 and 6.48 in
6CodeT5 generation script.
7CodeLlama infilling method.
8Prompts for code-to-text task with large model.
9https://huggingface.co/microsoft/codebert-base
10https://huggingface.co/Salesforce/codet5-base
11https://huggingface.co/codellama/CodeLlama-7b-hf

Python and Java, respectively. Codellama witnesses a BLEU drop
by 10.88 in Python. IHR decreases the BLEU score obtained by Code-
BERT by 5.41 and 5.68 in Python and Go, respectively. A similar
trend can be observed by CodeLlama, with BLEU scores dropped
by 0.93 and 2.48 in Java and Go, respectively.

FNE also plays a role in code summarization, particularly for
smaller models. For example, FNE decreases the BLEU scores by
5.49 and 3.48 for CodeBERT and CodeT5 respectively in the Go
language.

Overall, the results indicate that meaningful identifiers are criti-
cal for language models in code comprehension.

Comparing semantic and syntactic perturbations. To gain a more
in-depth comparison between semantic and syntactic perturbations,
we summarize the decrease of BLEU scores in Table 5. The results
show that all code language models are more sensitive to semantic
perturbations than to syntactic ones. According to the significance
test, the decreases are significant for most semantic perturbations
(p<0.001) while non-significant for most syntactic perturbations
(p>0.5). The results suggest that code language models pay more at-
tention to semantic features in the source code, such as function and
variable names. On the other hand, simple structural perturbations
do not significantly affect LLMs in code comprehension.

We particularly notice that the impact of syntactic perturbed
datasets is overshadowed by semantic perturbations. For instance,
semantic perturbations decrease the BLEU scores by 33.23% in
Python code summarization using CodeLlama, while syntactic per-
turbations only result in a 0.95% decrease with the same model and
language.

Meanwhile, most training tasks of code language models lack
explicit syntactic supervision. This strengthens the connection be-
tween meaningful identifiers and summaries, thereby reducing the
model’s robustness against semantic perturbations.

The results suggest the need for a more intensive evaluation of
syntactic perturbations to gain a deeper understanding of model
performance.

Comparing the code language models. We provide our compre-
hensive analysis based on three evaluation aspects: performance,
capability, and robustness. In terms of performance (Table 4, CodeL-
lama outperforms other baseline models on the primary test sets,
though it shows suboptimal scores on Go and Java which have not
been used for pre-training the model. From the model’s capability,
all three baseline models tend to focus on the perturbation of se-
mantics over syntax. This is particularly evident in larger models
such as CodeLlama. For robustness, the results presented in Table 5
suggest that CodeBERT is robust to strong perturbations in Python,
while in Go and Java, CodeLlama exhibits more robustness. Overall,
the higher the score a model achieves, the more sensitive it is to
semantic perturbations.

4.4 Qualitative Analysis
In addition to the quantitative analysis, we also provide a number
of cases. Figure 3 presents three cases of code summarization by
CodeT5. We compare the human-written references to the model-
generated summaries with and without FNE perturbation, respec-
tively. FNE (replacing function names with v0) aims to reduce the

https://github.com/salesforce/CodeT5/blob/main/CodeT5/run_gen.py
https://github.com/facebookresearch/codellama/blob/main/llama/generation.py
https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/codexglue_code_to_text.py
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/codellama/CodeLlama-7b-hf
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Table 4: Evaluation results on the obfuscated datasets (BL=BLEU, BS=BERTScore). The values in italic indicate nonsignificant
decrease (p>0.05)

Dataset
CodeBERT CodeT5 CodeLlama

Python Go Java Python Go Java Python Go Java
BL BS BL BS BL BS BL BS BL BS BL BS BL BS BL BS BL BS

Primary
17.95 29.64 17.78 40.11 18.62 31.92 20.38 34.41 19.67 43.18 20.66 35.35 22.03 38.91 12.78 26.30 15.11 33.68

Semantic Perturb.
IOE 13.89 19.52 11.02 16.26 13.85 21.53 15.23 22.05 16.90 37.09 14.18 20.90 11.15 13.27 12.75 26.26 13.34 29.40
IS 14.70 22.82 13.07 23.28 15.42 25.50 16.50 26.97 17.87 37.64 15.88 26.51 17.30 30.03 12.40 25.54 13.95 31.43
IHR 12.54 17.53 12.10 22.38 12.84 19.61 15.84 25.03 16.96 36.26 14.82 24.65 11.86 20.02 11.85 24.01 12.63 27.85
FNE 14.74 22.63 12.95 21.48 15.40 25.17 17.05 26.99 16.19 35.37 15.72 22.60 18.54 31.78 12.42 25.18 14.17 31.28

Syntactic Perturb.
OOS 17.94 29.63 17.79 40.14 18.61 31.90 19.34 33.43 19.71 43.27 20.68 35.45 22.08 38.86 12.77 26.29 15.08 33.70
HVI 17.53 28.69 17.75 40.08 18.15 30.99 19.32 33.19 19.62 43.00 20.65 35.25 21.69 38.53 12.88 26.46 15.22 33.67
DBI 17.34 28.27 17.87 40.40 18.26 31.41 18.77 31.61 19.15 42.51 20.25 34.87 21.69 38.49 12.95 26.28 14.95 33.06

*p-value is calculated with pairwise 2-sample Wilcoxon Signed rank test between the primary and each perturbed dataset.

Table 5: The decrease of BLEU scores with their relative per-
centage for each robustness aspect.

Lang Model Semantic Syntactic Overall

Py
CodeBERT 3.98/22.17% 0.35/1.95% 4.33/24.12%
CodeT5 4.22/20.71% 1.24/6.08% 5.46/26.79%
CodeLlama 7.32/33.23% 0.21/0.95% 7.53/34.18%

Go
CodeBERT 5.49/30.88% -0.02/-0.11% 5.47/30.76%
CodeT5 2.69/13.68% 0.18/0.92% 2.87/14.59%
CodeLlama 0.42/3.29% -0.09/-0.70% 0.33/2.58%

Java
CodeBERT 4.24/22.77% 0.28/1.50% 4.52/24.27%
CodeT5 5.51/26.67% 0.13/0.63% 5.64/27.30%
CodeLlama 1.59/10.52% 0.03/0.20% 1.62/10.72%

semantic hints that the model can obtain from the function name.
However, when the function name is eroded, the summary gen-
erated by CodeT5 becomes confusing because it still tends to use
the information of v0 for reasoning instead of summarizing the
information in the code body. We also found this phenomenon
with other semantic perturbations. Although these perturbations
do not change the functionality of the program, they hamper the
understanding of the overall semantics.

Answer to RQ2: The current code summarization models pre-
dominantly depend on semantic cues within the code such as
variable names, often neglecting the syntactic features such as
operators and branches. Existing benchmarks are biased toward
evaluating semantic features, thereby overlooking the models’
ability to understand syntactic features.

5 RQ3: ENHANCED ROBUSTNESS
EVALUATION THROUGH
CROSS-PERTURBATION

5.1 Methodology
Recognizing that models exhibit heightened awareness of semantic
cues, we embark on an in-depth examination of their capability
to comprehend code syntax. To achieve this, we introduce a novel
cross-perturbation evaluation methodology aimed at minimizing
the impact of semantic perturbations on the original code while
intensifying the syntactic features. Figure 4 shows our proposed
evaluation workflows, we construct balance-sensitivity datasets by
combining two distinct sets of perturbation rules: one focusing on
semantic perturbations and the other on syntactic perturbations.
Specifically, we select semantic perturbation rules that have the
maximal impact on the specific language and model. These chosen
semantic perturbation rules are then paired with one of the syntax
perturbation rules. We use this methodology to create a new bench-
mark named PoorCodeSumEval. We evaluate model performance
on the new benchmark.

5.2 Results
Table 6 presents the results of the cross-perturbation evaluation in
the new benchmark. Rows under “Semantic Perturb.” represent the
selected semantic perturbation rules that have the maximal impact
on the performance on the primary benchmark. Rows with “Cross
Perturb.” show the results of cross perturbation when the chosen
semantic perturbation is paired with each syntax perturbation. The
results show that when the sensitive semantic aspect is eliminated
from the code, the effect of syntactic perturbation begins to be
evident. We can draw some conclusions from the new perturbation
results.

Comparing the syntactic perturbations. The results indicate that
all models exhibit significant sensitivity to perturbations involving
dead branch insertion (DBI) (p<0.0001). High-frequency variable
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Table 6: BLEU scores on the cross-obfuscated datasets. The semantic perturbation chooses the one with the greatest impact on
the model in each programming language. The values in italic indicate nonsignificant decrease (p>0.05)

Dataset CodeBERT CodeT5 CodeLlama
Python Go Java Python Go Java Python Go Java

Semantic Perturb. IHR IOE IHR IOE FNE IOE IOE IHR IHR
primary 12.54 11.02 12.84 15.23 16.19 14.18 11.15 11.85 12.63

Cross Perturb.
Semantic × OOS 12.52 10.93 12.87 14.21 16.25 14.34 11.07 11.64 12.50
Semantic × HVI 11.57 10.81 12.16 13.75 15.75 13.58 8.85 11.82 12.51
Semantic × DBI 11.49 10.74 12.13 12.70 14.58 13.31 8.15 11.41 12.07
average 11.83 10.83 12.39 13.55 15.53 13.74 9.36 11.62 12.36

*p-value is calculated with pairwise 2-sample Wilcoxon Signed rank test between the primary and each perturbed dataset.

injection (HVI) also has an impact on model performance in some
models and languages. We particularly notice that Semantic×OOS
exhibits nonsignificant decrease (p>0.5). The results indicate that
operand swap does not affect the readability significantly whereas
dead branch injection is the most significant way for structural
obfuscation.

Unlike syntactic perturbed datasets used for robustness evalu-
ation, cross-perturbed datasets offer a more explicit revelation of
the model’s ability on low-sensitive aspects. This is achieved by
minimizing the impact of high-sensitivity code aspects, providing
a clearer understanding of the model’s performance across various
dimensions.

Comparing different programming languages. Among the three
programming languages, Python exhibits the highest sensitivity to
syntactic perturbation. This sensitivity may stem from Python’s
syntactic flexibility, causing code models to overly prioritize seman-
tic information and making it challenging to differentiate syntactic
perturbations.

Answer to RQ3: By eroding the semantic cues while intensi-
fying the syntactic features, PoorCodeSumEval can more com-
prehensively assess the ability of code language models in code
summarization.

6 DISCUSSION
6.1 Robustness and capability of code

summarization models
Our experiments reveal a notable distinction between a model’s
capability and robustness. A model that demonstrates robustness
to perturbations of specific features does not necessarily imply its
proficiency in capturing those features. For example, our findings
demonstrate that state-of-the-art code language models excel in
capturing semantic features rather than syntax. Hence the impact
of syntax perturbations on these models is marginal. In that sense,
the model is robust to syntax perturbations, but this robustness
does not inherently imply a strong ability to capture syntax fea-
tures. The high evaluation score observed in metrics is a reflection
of the model’s proficiency in capturing semantic features, which
may inadvertently overshadow its performance in capturing syntax
features.

6.2 Why are code language models sensitive to
identifier perturbations?

State-of-the-art code language models have been pre-trained on
large-scale code corpora. These pre-training objectives force the
models to focus on semantic cues (such as identifiers) that appear
in both natural and programming languages. In other words, the
performance of PLMs depends on the readability of the code. In
practice, however, the readability of code cannot be guaranteed,
which means that the model that achieves high evaluation scores
on the original benchmarks may fail to comprehend code with poor
readability in real datasets. This is particularly evident in larger
language models such as CodeLlama, which have been pre-trained
on large-scale standardized code.

6.3 Lessons Learned for Evaluating Code
Language Models

The ability of code LMs has been a growing concern, especially
when large language models (LLMs) have been widely applied for
SE tasks. As LLMs typically demonstrate strengths from different
perspectives, a comprehensive assessment of the model’s ability has
become a compelling need. Most existing benchmarks focus on cor-
rectness while overshadowing the robustness of models to varying
code readability. When investigating the current code summariza-
tion models (as shown in Table 4), we notice that benchmarks with
different obfuscation rules exhibit the different abilities of code LMs,
thereby giving a comprehensive assessment of model performance.
Therefore, providing code with different formats while evaluating
code summarization models is recommended, rather than directly
using existing datasets. Specifically, our study led to the following
lessons learned from the quality assessment on benchmark datasets,
for future code summarization researchers.

• Try to normalize identifiers and structures to conventional
forms to mitigate the influence of code irregularities on the
generated summaries.

• Try to erose semantic cues (e.g., identifiers, function names)
to enhance the evaluation of syntactic comprehension by
code language models.
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Code:

def get_pandas_df(self, hql, parameters=None):
import pandas
cursor = self.get_cursor()

cursor.execute(self._strip_sql(hql), parameters)
data = cursor.fetchall()

if data:
df = pandas.DataFrame(data)
df.columns = [c[0] for c in column_descriptions]

else:
df = pandas.DataFrame()

return df

Original answer: Get a pandas DataFrame from the database .

FNE answer: Execute the given SQL query .

Summary: Get a pandas dataframe from a sql query .

(a) A case in Python.

Code:

func NewResource(name,rtype,state,owner string,t time.Time) Resource 
{

return Resource{
Name:       name,
Type:       rtype,
State:      state,
Owner:      owner,
LastUpdate: t,
UserData:   &UserData{},

}
}

Original answer: NewResource creates a new resource

FNE answer: v0 is the version of Resource .

Summary: NewResource creates a new Boskos Resource .

(b) A case in Go.

Code:

static public byte[] intToBytes(int v) {
byte[] b = new byte[4];
int allbits = 255;
for (int i = 0; i < 4; i++) {

b[3-i] = (byte)((v & (allbits << i * 8)) >> i * 8);
}
return b;

}

Original answer: Convert an int to a byte array .

FNE answer: V0 byte array .

Summary: Convert an int to an array of 4 bytes .

(c) A case in Java.

Figure 3: Summaries generated by CodeT5 with and without
FNE perturbation.

6.4 Implications for Research and Practice
Need for research on more readability factors In this study, we
investigate the robustness of code summarization models through
seven obfuscation rules in code summarization benchmarks. We
believe that other characteristics of code could also reflect the

Semantic 
Evaluation

IOE

FNE

IHR

IRS
Syntactic 

Evaluation

DBI

OOS

HVI

Code LM

Cross Evaluation

Robustness Analysis & 
Fine-grained Analysis

Figure 4: The proposed evaluation workflow of Poor-
CodeSumEval, the solid blue arrow indicates the correspond-
ing evaluation of the model and the dashed green arrow
indicates the transmission of evaluation results.

readability of code. (1) Code length: whether longer code hin-
ders models from comprehending source code. A more rigorous
methodology could be separating code into groups with distinct
characteristics, such as long and short code, and analyzing each
group individually. (2) Code smell: more broadly, we could con-
sider code smell as a feature of low readability. (3) Inclusion of
line comments: Previous work has shown that high-quality line
comments can improve the readability of the code [29]. Low-quality
comments, on the other hand, may exhibit issues such as incoher-
ent statements, grammatical errors, or semantic mismatches with
the code, thereby increasing misunderstandings and reducing the
overall readability of the code. (4) Inclusion of domain libraries:
third-party libraries are frequently called in functions. Providing
the background knowledge of domain libraries will greatly help
improve the readability of the code.

Need for creating more benchmarks Comprehensive evalu-
ation of code language models has become a crucial objective in
software engineering, especially in the era of large language mod-
els. Our study reveals that existing benchmarks are biased toward
semantic features of code while neglecting the models’ ability to
comprehend syntax. This paper takes an initial step towards ad-
dressing the challenges of creating balanced benchmarks for code
summarization models. Although we have proposed a new work-
flow to measure the model’s ability to comprehend non-semantic
aspects of code, our solutions might not be sufficient for other re-
search tasks in software engineering that involve greater diversity,
more characteristics, and larger volumes of data sources. Thus, we
urge the research community to build benchmarks from multiple
evaluation perspectives.

Need for research on more metrics Existing evaluation met-
rics such as BLEU and BERTScore primarily focus on the surface-
level similarity between the generated summaries and the reference
summaries. However, evaluating code summarization models from
multiple perspectives is crucial. In this study, we introduce a novel
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evaluation workflow tailored to assess the robustness of code lan-
guage models. We anticipate the emergence of more specialized
evaluation metrics that target specific aspects of model perfor-
mance, thereby enriching the evaluation process and enabling a
more holistic assessment of code models.

Need for research on data normalization. Our study indicates
that code language models strongly rely on semantic features such
as identifiers. Meaningful and descriptive identifiers can greatly im-
prove code readability [32], thereby facilitating semantic learning
by code language models. On the other hand, programmers adhere
to diverse programming conventions, leading to inconsistent for-
mats and naming styles. This significantly hampers the learning
of code semantics. Therefore, normalizing source code to the same
format and style is crucial to enhance code comprehension. In this
study, we investigate how code obfuscation impacts the perfor-
mance of code language models. The widely-used datasets could
contain other types of low-quality code that have not undergone
cleaning and normalization processes. As LLMs typically require
high-volume data, ensuring code quality at a large scale has become
a compelling need.

7 THREATS TO VALIDITY
The use of synthetic poor-readability code. In large-scale exper-
iments, we create low-readability code using synthetic perturbation
rules instead of human-written low-readable code, which may re-
duce the validity of our conclusions in practice. To mitigate this
threat, we consider two primary aspects of code readability, namely,
semantic cues and syntactic rules. For each aspect, we choose the
most representative obfuscation rules to mimic different cases of
low readability in real-world programs. These perturbated bench-
marks allow us to investigate the effectiveness of code language
models in various readability conditions by controlling perturbation
rules.
Using single holistic metrics to measure the comprehensive
performance of models. Although our goal is to explore the
models’ performance across broader readability aspects, we employ
holistic metrics such as BLEU and BERTScore in our study.We argue
that these metrics can reflect comprehensive performance because
we have expanded the primary test benchmarks to encompass
various aspects through different obfuscation rules, generating
multiple fine-grained results with a single metric. Consequently,
the evaluated model can be analyzed by comparing its performance
across different obfuscation datasets, unlike previous works that
require comparisons of overall performance with other models.

8 RELATEDWORK
8.1 Studies on Code Summarization Evaluation
Besides our work, there have been other works that study the
evaluation of code summarization systems [30, 31]. For example,
[30] carried out an in-depth analysis of the evaluation of the code
summarization task. Their work focuses on several aspects of the
evaluation process such as the data pre-processes, operation model
used, characteristics of datasets, and evaluation metrics. Shi et al.
[31] concern about the quality of the benchmark datasets built from
real-world projects and study the noise in different benchmark
datasets.

While these works study the quality of evaluation data, Poor-
CodeSumEval analyzes the robustness of code language models
by obfuscating the test data under different readability factors. Ad-
ditionally, PoorCodeSumEval offers a new evaluation workflow
to comprehensively assess the model’s performance in varying
readability conditions. Table 7 compares PoorCodeSumEval with
previous benchmarks on the code summarization task. As seen,
PoorCodeSumEval provides a more rigorous evaluation for code
summarization models: using test data of more challenging read-
ability to analyze fine-grained aspects of the model including per-
formance, capabilities, and robustness.

8.2 Studies on Code Readability
Code readability has long been a focal point in the study of soft-
ware quality and maintenance [3, 18, 27–29]. Buse and Weimer
propose an automated readability metric based on human annota-
tions, showing strong correlations with software quality metrics
such as code changes and defect reports. Their results suggest that
readability can significantly impact software quality [3]. Scalabrino
et al. advanced this field through a series of follow-up studies.
They introduced textual features, including identifiers and com-
ments, to complement structural ones in code readability models,
significantly improving their accuracy [29]. Later, they continue
to introduce additional textual features into code readability mod-
els. Their work demonstrated that a combined model of structural
and textual features predicts readability and software issues more
accurately [27]. They further investigated the correlation between
various metrics and code understandability and found that tradi-
tional readability and complexity metrics do not effectively capture
code understandability, highlighting the need for new metrics [28].
Johnson et al. conducted an experiment to assess readability rules.
Their study found that minimizing nesting improved comprehen-
sion and bug-finding efficiency, whereas avoiding do-while loops
had no significant effect [18].

Unlike previous works that investigate readability from human
aspects, we study the effect of readability on code comprehension by
code language models. Our work diverges from theirs by focusing
on how readability affects code comprehension by language models,
aiming to bridge the gap between human and machine readability
studies.

8.3 Robustness of Code Language Models
Besides our work, there have been studies on the robustness of
code language models. Wang et al. analyzed the robustness of code
generationmodels [37] to noisy data samples [38]. Similarly, Yang et
al. assessed and enhanced the robustness of programming language
models in code translation tasks [41].

Some previous works aimed at enhancing the robustness of code
models. Bielik et al. proposed a novel technique to train accurate
and robust neural models of code, addressing key challenges specific
to the domain of code, such as incomplete code snippets and the
structured nature of programs [1]. Ramakrishnan et al. designed
a robust-optimization objective training process to enhance the
robustness of models against semantic-preserving code transforma-
tions [11]. Wang et al. employed noisy label learning (NLL) while
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Table 7: Comparison of different benchmarks on the code summarization task. The capability refers to the ability of the model
to capture semantics or syntax from code.

Benchmark Multilingual Multiple Datasets Evaluation Aspects
Performance Capability Robustness

TL-CodeSum [13] × × √ × ×
DeepCom [12] × × √ × ×
CodeSearchNet [14]

√ × √ × ×
CodeXGLUE [23]

√ × √ × ×
XLCoST [46]

√ √ √ × ×
PoorCodeSumEval

√ √ √ √ √

training code models, achieving notable results, particularly for
small models [38].

Some previous works exploit the vulnerabilities in code lan-
guage models and attack them using adversarial samples. Yefet et
al. presented the first approach for attacking code models using
adversarial examples [42]. Jha et al. introduced CodeAttack, a black-
box adversarial attack model that detects vulnerabilities in small
pre-trained models across tasks [17]. Zhou et al. [45] studied the
robustness of pre-trained code summarization models. They intro-
duce ACCENT which generates adversarial samples to enhance
model robustness through adversarial training.

Our paper presents several significant differences to related
works: First, related studies were not designed upon LLMs. They
were built upon Transformer without pre-training or solely small
language models. Consequently, their findings may not be appli-
cable to LLMs. By contrast, we are the first to analyze code sum-
marization models on poor-readability code using LLMs. Second,
previous works focus solely on identifier perturbation, whereas
PoorCodeSumEval offers a comprehensive analysis across various
readability dimensions and obfuscation rules, including both se-
mantic and syntax. Finally, we propose a novel cross-obfuscation
methodology to evaluate the LLM’s ability in comprehending the
insensitivity aspects of code.

9 CONCLUSION
In this paper, we propose PoorCodeSumEval, a robustness evalua-
tion benchmark for code summarization tasks. PoorCodeSumEval
modifies existing benchmarks to reflect varying degrees of readabil-
ity through code obfuscation, thereby enabling a comprehensive
evaluation of code summarization models on multiple aspects of
model performance. Our experiments, conducted on three base-
line models, reveal that existing models showcasing high BLEU
and BERTScores exhibit high sensitivity to semantic features in
code, particularly identifiers. Notably, larger models exhibit a more
pronounced dependence on these semantic features, making them
vulnerable to code with poor readability. Our work can inspire fu-
ture research to evaluate more aspects of model capability, instead
of relying on individual metrics and datasets.

DATA AVAILABILITY
We make PoorCodeSumEval, benchmark models, and code publicly
available at https://github.com/ythere-y/PoorCodeSumEval
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