Deep Code Search

Xiaodong Gu!, Hongyu Zhang?, and Sunghun Kim®?
'The Hong Kong University of Science and Technology, Hong Kong
guxiaodong1987@126.com,hunkim@cse.ust.hk
The University of Newcastle, Callaghan, Australia
hongyu.zhang@newcastle.edu.au
3Clova Al Research, NAVER

ABSTRACT

To implement a program functionality, developers can reuse pre-
viously written code snippets by searching through a large-scale
codebase. Over the years, many code search tools have been pro-
posed to help developers. The existing approaches often treat source
code as textual documents and utilize information retrieval models
to retrieve relevant code snippets that match a given query. These
approaches mainly rely on the textual similarity between source
code and natural language query. They lack a deep understanding
of the semantics of queries and source code.

In this paper, we propose a novel deep neural network named
CODEnn (Code-Description Embedding Neural Network). Instead
of matching text similarity, CODEnn jointly embeds code snippets
and natural language descriptions into a high-dimensional vec-
tor space, in such a way that code snippet and its corresponding
description have similar vectors. Using the unified vector repre-
sentation, code snippets related to a natural language query can
be retrieved according to their vectors. Semantically related words
can also be recognized and irrelevant/noisy keywords in queries
can be handled.

As a proof-of-concept application, we implement a code search
tool named DEEePCS using the proposed CODEnn model. We em-
pirically evaluate DEEPCS on a large scale codebase collected from
GitHub. The experimental results show that our approach can ef-
fectively retrieve relevant code snippets and outperforms previous
techniques.

CCS CONCEPTS

« Software and its engineering — Reusability;

KEYWORDS

code search, deep learning, joint embedding

ACM Reference Format:

Xiaodong Gu!, Hongyu Zhang?, and Sunghun Kim%3. 2018. Deep Code
Search. In ICSE ’18: ICSE ’18: 40th International Conference on Software
Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3180155.3180167

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180167

1 INTRODUCTION

Code search is a very common activity in software development
practices [57, 68]. To implement a certain functionality, for example,
to parse XML files, developers usually search and reuse previously
written code by performing free-text queries over a large-scale
codebase.

Many code search approaches have been proposed [13, 15, 29,
31, 32, 35, 44, 45, 47, 62], most of them being based on information
retrieval (IR) techniques. For example, Linstead et al. [43] proposed
Sourcerer, an information retrieval based code search tool that com-
bines the textual content of a program with structural information.
McMillan et al. [47] proposed Portfolio, which returns a chain of
functions through keyword matching and PageRank. Lu et al. [44]
expanded a query with synonyms obtained from WordNet and
then performed keyword matching of method signatures. Lv et
al. [45] proposed CodeHow, which combines text similarity and
API matching through an extended Boolean model.

A fundamental problem of the IR-based code search is the mis-
match between the high-level intent reflected in the natural lan-
guage queries and low-level implementation details in the source
code [12, 46]. Source code and natural language queries are hetero-
geneous. They may not share common lexical tokens, synonyms, or
language structures. Instead, they may only be semantically related.
For example, a relevant snippet for the query “read an object from
an xml” could be as follows:

public static < S > S deserialize(Class c, File xml) {

try {
JAXBContext context = JAXBContext.newInstance(c);
Unmarshaller unmarshaller = context.createUnmarshaller();
S deserialized = (S) unmarshaller.unmarshal(xml);
return deserialized;

} catch (JAXBException ex) {
log.error("Error-deserializing-object-from-XML", ex);
return null;

)i

Existing approaches may not be able to return this code snippet
as it does not contain keywords such as read and object or their
synonyms such as load and instance. Therefore, an effective code
search engine requires a higher-level semantic mapping between
code and natural language queries. Furthermore, the existing ap-
proaches have difficulties in query understanding [27, 29, 45]. They
cannot effectively handle irrelevant/noisy keywords in queries [27].
Therefore, an effective code search engine should also be able to
understand the semantic meanings of natural language queries and
source code in order to improve the accuracy of code search.

In our previous work, we introduced the DEEPAPI framework [27],
which is a deep learning based method that learns the semantics of
queries and the corresponding API sequences. However, searching
source code is much more difficult than generating APIs, because

https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/3180155.3180167

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

the semantics of code snippets are related not only to the API se-
quences but also to other source code aspects such as tokens and
method names. For example, DEEPAPI could return the same API
ImagelO.write for the query save image as png and save image as
Jjpg. Nevertheless, the actual code snippets for answering the two
queries are different in terms of source code tokens. Therefore, the
code search problem requires models that can exploit more aspects
of the source code.

In this paper, we propose a novel deep neural network named CO-
DEnn (Code-Description Embedding Neural Network). To bridge
the lexical gap between queries and source code, CODEnn jointly
embeds code snippets and natural language descriptions into a
high-dimensional vector space, in such a way that code snippet
and its corresponding description have similar vectors. With the
unified vector representation, code snippets semantically related
to a natural language query can be retrieved according to their
vectors. Semantically related words can also be recognized and
irrelevant/noisy keywords in queries can be handled.

Using CODEnn, we implement a code search tool, DEEPCS as a
proof of concept. DEEPCS trains the CODEnn model on a corpus of
18.2 million Java code snippets (in the form of commented methods)
from GitHub. Then, it reads code snippets from a codebase and
embeds them into vectors using the trained CODEnn model. Finally,
when a user query arrives, DEEPCS finds code snippets that have
the nearest vectors to the query vector and return them.

To evaluate the effectiveness of DEEPCS, we perform code search
on a search codebase using 50 real-world queries obtained from
Stack Overflow. Our results show that DEEPCS returns more rele-
vant code snippets than the two related approaches, that is, Code-
How [45] and a conventional Lucene-based code search tool [5].
On average, the first relevant code snippet returned by DEEPCS
is ranked 3.5, while the first relevant results returned by Code-
How [45] and Lucene [43] are ranked 5.5 and 6.0, respectively.
For 76% of the queries, the relevant code snippets can be found
within the top 5 returned results. The evaluation results confirm
the effectiveness of DEgpPCS.

To our knowledge, we are the first to propose deep learning based
code search. The main contributions of our work are as follows:

e We propose a novel deep neural network, CODEnn, to learn a
unified vector representation of both source code and natural
language queries.

e We develop DEEPCS, a tool that utilizes CODEnn to retrieve
relevant code snippets for given natural language queries.

o We empirically evaluate DEEPCS using a large scale codebase.

The rest of this paper is organized as follows. Section 2 describes
the background of the deep learning based embedding models.
Section 3 describes the proposed deep neural network for code
search. Section 4 describes the detailed design of our approach.
Section 5 presents the evaluation results. Section 6 discusses our
work, followed by Section 7 that presents the related work. We
conclude the paper in Section 8.

2 BACKGROUND

Our work adopts recent advanced techniques from deep learning
and natural language processing [10, 17, 70]. In this section, we
discuss the background of these techniques.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim

Output Layer I;l
Embedding
Hidden Layer | h, l_.l h, l_.l h, |
W, TWZ T‘Ns
Input Layer | | | | | |

parse xml file

(a) RNN Structure (b) RNN for sentence embedding
Figure 1: Illustration of the RNN Sentence Embedding

2.1 Embedding Techniques

Embedding (also known as distributed representation [50, 72]) is
a technique for learning vector representations of entities such as
words, sentences and images in such a way that similar entities
have vectors close to each other [48, 50].

A typical embedding technique is word embedding, which repre-
sents words as fixed-length vectors so that similar words are close
to each other in the vector space [48, 50]. For example, suppose the
word execute is represented as [0.12, -0.32, 0.01] and the word run
is represented as [0.12, -0.31, 0.02]. From their vectors, we can es-
timate their distance and identify their semantic relation. Word
embedding is usually realized using a machine learning model such
as CBOW and Skip-Gram [48]. These models build a neural net-
work that captures the relations between a word and its contextual
words. The vector representations of words, as parameters of the
network, are trained with a text corpus [50].

Likewise, a sentence (i.e., a sequence of words) can also be em-
bedded as a vector [59]. A simple way of sentence embedding is,
for example, to view it as a bag of words and add up all its word
vectors [39].

2.2 RNN for Sequence Embedding

We now introduce a widely-used deep neural network, the Recur-
rent Neural Networks (RNN) [49, 59] for the embedding of sequen-
tial data such as natural language sentences. The Recurrent Neural
Network is a class of neural networks where hidden layers are
recurrently used for computation. This creates an internal state
of the network to record dynamic temporal behavior. Figure 1a
shows the basic structure of an RNN. The neural network includes
three layers, an input layer which maps each input to a vector, a
recurrent hidden layer which recurrently computes and updates a
hidden state after reading each input, and an output layer which
utilizes the hidden state for specific tasks. Unlike traditional feed-
forward neural networks, RNNs can embed sequential inputs such
as sentences using their internal memory [25].

Consider a natural language sentence with a sequence of T
words s=wi, ..., wr, RNN embeds it through the following com-
putations: it reads words in the sentence one by one, and updates a
hidden state at each time step. Each word w; is first mapped to a
d-dimensional vector w; R4 by a one-hot representation [72] or
word embedding [50]. Then, the hidden state (values in the hidden
layer) h; is updated at time ¢ by considering the input word w; and
the preceding hidden state h;_i:

ht = tanh(W [ht_l; Wt]), Vi=1,2,...,T (1)

Deep Code Search

max pooling
34|75 |withixa
83|24 8|
hy hy hy h;

Figure 2: Illustration of max pooling

where [a;b]eRZd represents the concatenation of two vectors, We
R24%d s the matrix of trainable parameters in the RNN, while
tanh is a non-linearity activation function of the RNN. Finally,
the embedding vector of the sentence is summarized from the
hidden states hy, ..., ht. A typical way is to select the last hidden
state ht as the embedding vector. The embedding vector can also be
summarized using other computations such as the maxpooling [36]:

s = maxpooling([hy, ..., hT]) (2)

Maxpooling is an operation that selects the maximum value in
each fixed-size region over a matrix. Figure 2 shows an example
of maxpooling over a sequence of hidden vectors hy, ..., ht. Each
column represents a hidden vector. The window size of each region
is set to 1XT in this example. The result is a fixed-length vector
whose elements are the maximum values of each row. Maxpooling
can capture the most important feature (one with the highest value)
for each region and can transform sentences of variable lengths
into a fixed-length vector.

Figure 1b shows an example of how RNN embeds a sentence
(e.g., parse xml file) into a vector. To facilitate understanding, we
expand the recurrent hidden layer for each time step. The RNN
reads words in the sentence one by one, and updates a hidden state
at each time step. When it reads the first word parse, it maps the
word into a vector w; and computes the current hidden state h;
using wy. Then, it reads the second word xml, embeds it into wy,
and updates the hidden state h; to h; using wy. The procedure
continues until the RNN receives the last word file and outputs the
final state h3. The final state h3 can be used as the embedding ¢ of
the whole sentence.

The embedding of the sentence, i.e., the sentence vector, can
be used for specific applications. For example, one can build a
language model conditioning on the sentence vector for machine
translation [17]. One can also embed two sentences (a question
sentence and an answer sentence) and compare their vectors for
answer selection [21, 71].

2.3 Joint Embedding of Heterogeneous Data

Suppose there are two heterogeneous data sets X and Y. We want
to learn a correlation between them, namely,
FiX—y)
For example, suppose X is a set of images and Y is a set of natural
language sentences, f can be the correlation between the images
and the sentences (i.e., image captioning). Since the two data sources
are heterogeneous, it is difficult to discover the correlation f directly.
Thus, we need a bridge to connect these two levels of information.
Joint Embedding, also known as multi-modal embedding [78], is
a technique to jointly embed/correlate heterogeneous data into a
unified vector space so that semantically similar concepts across
the two modalities occupy nearby regions of the space [33]. The
joint embedding of X and Y can be formulated as:

X—(f)%VX — J(Vx, V‘y)<—Vy(—l//—y (4)

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

PUBTIC Void readText(string file) {
BufferedReader br = new BufferedReader(
new FileInputstrean(file));

“read a text file String line = null;
" R «—| while ((1line = br.readLine())!= null) {
line by line System.out.printin(line);

}
br.close();

pub’ falize(Class c,File xal) {
n text

= JAXBContext.newInstance(c);
Unnarshaller unmarshaller

“read an object «— = context.createUnmarshaller();
W S deserialized
from an xml file =(S)unmarshaller.unmarshal (xnl);
ed

return deserialized;

Figure 3: An example showing the idea of joint embedding for code
and queries. The yellow points represent query vectors while the
blue points represent code vectors.

where ¢:X—R? is an embedding function to map X into a d-
dimensional vector space V; §:Y —R? is an embedding function
to map Y into the same vector space V; J(:, -) is a similarity mea-
sure (e.g., cosine) to score the matching degrees of Vx and Vy in
order to learn the mapping functions. Through joint embedding,
heterogeneous data can be easily correlated through their vectors.

Joint embedding has been widely used in many tasks [22, 74,
78]. For example, in computer vision, Karpathy and Li [33] use a
Convolutional Neural Network (CNN) [22], a deep neural network
as the ¢ and an RNN as the ¢/, to jointly embed both image and text
into the same vector space for labeling images [33].

3 A DEEP NEURAL NETWORK FOR CODE
SEARCH

Inspired by existing joint embedding techniques [21, 22, 33, 78],
we propose a novel deep neural network named CODEnn (Code-
Description Embedding Neural Network) for the code search prob-
lem. Figure 3 illustrates the key idea. Natural language queries and
code snippets are heterogeneous and cannot be easily matched ac-
cording to their lexical tokens. To bridge the gap, CODEnn jointly
embeds code snippets and natural language descriptions into a
unified vector space so that a query and the corresponding code
snippets are embedded into nearby vectors and can be matched by
vector similarities.

3.1 Architecture

As introduced in Section 2.3, a joint embedding model requires three
components: the embedding functions ¢:X—R% and y:Y —>R?,
as well as the similarity measure J(-,-). CODEnn realizes these
components with deep neural networks.

Figure 4 shows the overall architecture of CODEnn. The neu-
ral network consists of three modules, each corresponding to a
component of joint embedding:

e a code embedding network (CoNN) to embed source code
into vectors.

e a description embedding network (DeNN) to embed natural
language descriptions into vectors.

o a similarity module that measures the degree of similarity
between code and descriptions.

The following subsections describe the detailed design of these
modules.

3.1.1 Code Embedding Network. The code embedding network
embeds source code into vectors. Source code is not simply plain
text. It contains multiple aspects of information such as tokens,
control flows and APIs [46]. In our model, we consider three aspects

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim

code vector [¢] m'; description vector [E]

Code Vector /\l;‘ Description Vector ‘
Cosline S'Co'iiniy
Similarit imilari
Y \ Fusion \/
m fa &
max poolin max poolin max poolin max poolin
(T p TE / (T TF) g T / (p g / (T T P Tg T /
Code Embedding Description Embedding — 1 — - = = =
Network (CONN) Network(DeNN) = = =z =4 = Q = = N || | |
g g g "z (| | |5 2 g 2 g
</> — text reader Scannernew Scannernext Scannerclose str buff close read a text file
4 method name [M] APl sequence [A] Tokens [I'] [D]
Code Description Code Description
(a) Overall Architecture (b) Detailed Structure

Figure 4: The structure of the Code-Description Embedding Neural Network

of source code: the method name, the API invocation sequence, and
the tokens contained in the source code. They are commonly used
in existing code search approaches [19, 27, 41, 44, 45]. For each
code snippet (at the method level), we extract these three aspects
of information. Each is embedded individually and then combined
into a single vector representing the entire code.

Consider an input code snippet C=[M, A, T'], where M=wx,...,
WN,, is the method name represented as a sequence of Njs camel
split tokens [1]; A=ay, ...,an, is the API sequence with N4 con-
secutive API method invocations, and I'={ry, ..., 7n;.} is the set of
tokens in the snippet. The neural network embeds the three aspects
as follows: for the method name M, it embeds the sequence of camel
split tokens using an RNN with maxpooling:

h; = tanh(W M[h,_;w,]), Ve =1,2, ..., Ny
- hny D

where thRd is the embedding vector of token wy, [a;b]ERZd rep-
eRQdXd

®)

m = maxpooling([hy, ..

resents the concatenation of two vectors, WM is the matrix
of trainable parameters in the RNN, tanh is the activation function
of the RNN. A method name is thus embedded as a d-dimensional
vector m.

Likewise, the API sequence A is embedded into a vector a using
an RNN with maxpooling:

h; = tanh(W A[hy_1;a;]), Vi =1,2, ..., Ny
- hny D)
where a; €R9 is the embedding vector of API a;, W4 is the matrix
of trainable parameters in the RNN.
For the tokens I, as they have no strict order in the source code,

they are simply embedded via a multilayer perceptron (MLP), i.e.,
the conventional fully connected layer [52]:

h; = tanh(Wrri), Vi=1,2,...,Np (7)

(©)

a = maxpooling([hj, ..

where 7;eR? represents the embedded representation of the to-
ken 1j, WT is the matrix of trainable parameters in the MLP,
h;,i=1, ..., Ny are the embedding vectors of all individual tokens.
The individual vectors are also summarized to a single vector ¢ via
maxpooling:

t = maxpooling([hy, ..., Ang1) (8)

Finally, the vectors of the three aspects are fused into one vector
through a fully connected layer:

¢ = tanh(W €[m; a; t]))
where [a;b;c] represents the concatenation of three vectors, w€is

the matrix of trainable parameters in the MLP. The output vector ¢
represents the final embedding of the code snippet.

3.1.2 Description Embedding Network. The description embed-
ding network (DeNN) embeds natural language descriptions into
vectors. Consider a description D=wy, ..., wy,, comprising a se-
quence of Np words. DeNN embeds it into a vector d using an RNN
with maxpooling:

h; = tanh(W P[h,_i; we]), Ve = 1,2, ..., Np
- hnp)

where w;€R? represents the embedded representation of the de-
scription word w;, WP is the matrix of trainable parameters in the
RNN, hy, t=1,...Np are the hidden states of the RNN.

. (10)
d = maxpooling([hy, ..

3.1.3 Similarity Module. We have described the transformations
that map the code and description into vectors (i.e., the ¢ and d).
Since we want the vectors of code and description to be jointly
embedded, we measure the similarity between the two vectors.

We use the cosine similarity for the measurement, which is
defined as: cTd

e D= rera .
where ¢ and d are the vectors of code and a description respec-
tively. The higher the similarity, the more related the code is to the
description.

Overall, CODEnn takes a (code, description) pair as input and
predicts their cosine similarity cos(c, d).

3.2 Model Training

Now we present how to train the CODEnn model to embed both
code and descriptions into a unified vector space. The high-level
goal of the joint embedding is: if a code snippet and a description
have similar semantics, their embedded vectors should be close to
each other. In other words, given an arbitrary code snippet C and

Deep Code Search

an arbitrary description D, we want it to predict a high similarity
if D is a correct description of C, and a little similarity otherwise.

At training time, we construct each training instance as a triple
(C, D+, D-): for each code snippet C, there is a positive descrip-
tion D+ (a correct description of C) as well as a negative description
(an incorrect description of C) D- randomly chosen from the pool
of all D+’s. When trained on the set of (C, D+, D-) triples, the CO-
DEnn predicts the cosine similarities of both (C, D+) and (C, D-)
pairs and minimizes the ranking loss [18, 22]:

L(0) = max(0, € — cos(c, d+) + cos(c, d-)) (12)
<C,D+,D->¢P

where 6 denotes the model parameters, P denotes the training
dataset, € is a constant margin. ¢, d+ and d- are the embedded
vectors of C, D+ and D-, respectively. A small, fixed € value of
0.05 is used in all the experiments. Intuitively, the ranking loss
encourages the cosine similarity between a code snippet and its
correct description to go up, and the cosine similarities between a
code snippet and incorrect descriptions to go down.

4 DEEPCS: DEEP LEARNING BASED CODE
SEARCH

In this section, we describe DEEPCS, a code search tool based on
the proposed CODEnn model. DEEPCS recommends top K most
relevant code snippets for a given natural language query. Figure 5
shows the overall architecture. It includes three main phases: offline
training, offline code embedding, and online code search.

We begin by collecting a large-scale corpus of code snippets,
i.e., Java methods with corresponding descriptions. We extract sub-
elements (including method names, tokens, and API sequences)
from the methods. Then, we use the corpus to train the CODEnn
model (the offline training phase). For a given codebase from which
users would like to search for code snippets, DEEPCS extracts code
elements for each Java method in the search codebase, and computes
a code vector using the CoONN module of the trained CODEnn model
(the offline embedding phase). Finally, when a user query arrives,
DEeEPCS first computes the vector representation of the query using
the DeNN module of the CODEnn model, and then returns code
snippets whose vectors are close to the query vector (the online
code search phase).

In theory, our approach could search for source code written in
any programming languages. In this paper, we limit our scope to
the Java code. The following sections describe the detailed steps of
our approach.

4.1 Collecting Training Corpus

As described in Section 3, the CODEnn model requires a large-scale
training corpus that contains code elements and the correspond-
ing descriptions, i.e., the (method name, API sequence, tokens,
description) tuples. Figure 6 shows an excerpt of the training cor-
pus.

We build the training tuples using Java methods that have doc-
umentation comments! from open-source projects on GitHub [3].
For each Java method, we use the method declaration as the code
element and the first sentence of its documentation comment as its

1A documentation comment in JAVA starts with slash-asterisk-asterisk (/+*) and ends
with asterisk-slash (/)

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

natural language description. According to the Javadoc guidance?,
the first sentence is usually a summary of a method. To prepare the
data, we download Java projects from GitHub created from August,
2008 to June, 2016. To remove toy or experimental programs, we
exclude any projects without a star. We select only the Java methods
that have documentation comments from the downloaded projects.
Finally, we obtain a corpus comprising 18,233,872 commented Java
methods.

Having collected the corpus of commented code snippets, we ex-
tract the (method name, APl sequence, tokens, description) tuples
as follows:

Method Name Extraction: For each Java method, we extract its
name and parse the name into a sequence of tokens according
to camel case [1]. For example, the method name listFiles will be
parsed into the tokens list and files.

API Sequence Extraction: We extract an API sequence from each
Java method using the same procedures as described in DEEP-
API [27] - parsing the AST using the Eclipse JDT compiler [2]
and traversing the AST. The API sequences are produced as fol-
lows [27]:

e For each constructor invocation new C(), we produce C.new
and append it to the API sequence.

e For each method call 0.m() where o is an instance of class C,
we produce C.m and append it to the API sequence.

e For a method call passed as a parameter, we append the
method before the calling method. For example, 01.m1(02
.mz(),03.m3()), we produce a sequence Cy.my-C3.m3-Cy.my,
where C; is the class of the instance o;.

e For a sequence of statements s1; s2;...;sN, we extract the API
sequence a; from each statement s;, concatenate them to the
API sequence aj-az-..-an.

e For conditional statements such as if(sq){s2;}else{ss;}, we cre-
ate a sequence from all possible branches, that is, a;-az-as,
where a; is the API sequence extracted from the statement s;.

e For loop statements such as while(s;){s2;}, we produce a
sequence aj-az, where a; and ay are API sequences extracted
from the statement s; and sy, respectively.

Token Extraction: To collect tokens from a Java method, we tok-
enize the method body, split each token according to camel case [1],
and remove the duplicated tokens. We also remove stop words (such
as the and in) and Java keywords as they frequently occur in source
code and are not discriminative.
Description Extraction: To extract the documentation comment,
we use the Eclipse JDT compiler [2] to parse the AST from a Java
method and extract the JavaDoc Comment from the AST.

Figure 7 shows an example of code elements and documentation
comments extracted from a Java method DateUtils.toCalendar?® in
the Apache commons-lang library.

4.2 Training CODEnn Model

We use the large-scale corpus described in the previous section
to train the CODEnn model, following the method described in
Section 3.2.

http://www.oracle.com/technetwork/articles/java/index-137868.html
Shttps://github.com/apache/commons-lang/blob/master/src/main/java/org/apache/
commons/lang3/time/DateUtils.java

http://www.oracle.com/technetwork/articles/java/index-137868.html
https://github.com/apache/commons-lang/blob/master/src/main/java/org/apache/commons/lang3/time/DateUtils.java
https://github.com/apache/commons-lang/blob/master/src/main/java/org/apache/commons/lang3/time/DateUtils.java

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Xiaodong Gu, Hongyu Zhang, and Sunghun Kim

public void foo(int para) {
int ret = Lib.get(para);

¥

JAVA N : N
Eiantes) 11 01 - 42

Code Vectors

: Training Set :

{ i K-Nearest
: L 2 . 1.1

i ' D bedd i

: l Training S embedding \[0.4 Selection
! - | O— 0 :

!] IS »

; - : CODEnn 50

' aspect i Query Vector

: extractio b NS,
; aspect

E codesnippets |</> natural extraction € C Cy
1 (Javamethods) | java dlang_ua_ge 02 05 - 13

5 escriptions el oz 05

Commented
ode Snippets| </

Search
O Codebase

Figure 5: The overall workflow of DEEPCS

O

Offline Embedding

Method Name API Sequence Tokens Description (English)
1 file reader InputStream.read—OutputStream.write input, output, stream, write copy a file from an inputstream
2 open URL.new—URL.openConnection url, open, conn open a url
3 | test exists File.new—pFile.exists file, create, exists test file exists

Figure 6: An excerpt of training tuples

- with one Nvidia K40 GPU. The training lasts ~50 hours with 500

Converts a Date into a Calendar.
* @param date the date to convert to a Calendar epochs.
* @return the created Calendar
hrows NullPointerException if null is passed in

* @since 3.0

4.3 Searching Code Snippets

y
public static Calendar toCalendar(final Date date) { . R
final Calendar c = Calendar.getInstance(); Given a user’s free-text query, DEEPCS returns the relevant code
c.setTime(date); . .
return c;() snippets through the trained CODEnn model. It first computes the
} code vector for each code snippet (i.e., a Java method) in the search
@ codebase. Then, it selects and returns the code snippets that have
Method Name: to calendar the top K nearest vectors to the query vector.
APl sequence: Calendar.getinstance—>Calendar.setTime More specially, before a search starts, DEEPCS embeds all code
Tokens: calendar, get, instance, set, time, date . . . i .
Description: converts a date into a calendar, snippets in the codebase into vectors using the trained CoNN mod-

ule of CODEnn in an off-line manner. During the on-line search,
Figure 7: An example of extracting code elements from a Java when a developer enters a natural language query, DEepCS first
method DateUtils.toCalendar3 embeds the query into a vector using the trained DeNN module
of CODEnn. Then, it estimates the cosine similarities between the
query vector and all code vectors using Equation 11. Finally, the top
K code snippets whose vectors are most similar to the query vector

The detailed implementation of the CODEnn model is as follows:) . .
are returned as the search results. K is set to 10 in our experiments.

we use the bi-directional LSTM [70], a state-of-the-art kind of RNN
for the RNN implementation. All LSTMs have 200 hidden units
in each direction. We set the dimension of word embedding to 5 EVALUATION

100. The CODEnn has two types of MLPs, the embedding MLP for In this section, we evaluate DEEPCS through experiments. We also
embedding individual tokens and the fusion MLP to combine the compare DEEPCS with related code search approaches.
embeddings of different aspects. We set the number of hidden units
as 100 for the embedding MLP and 400 for the fusion MLP.

The CODEnn model is trained via the mini-batch Adam algo- 5.1 Experimental Setup

rithm [37, 40]. We set the batch size (i.e., the number of instances 5.1.1 Search Codebase. To better evaluate DEEPCS, our exper-
per batch) as 128. For training the neural networks, we limit the iments are performed over a search codebase, which is different
size of the vocabulary to 10,000 words that are most frequently from the training corpus. Code snippets that match a user query are
used in the training dataset. retrieved from the search codebase. In practice, the search codebase

We build our model on Keras [4] and Theano [6], two open- could be an organization’s local codebase or any codebase created

source deep learning frameworks. We train our models on a server from open source projects.

Deep Code Search

To construct the search codebase, we choose the Java projects
that have at least 20 stars in GitHub. Different from the training cor-
pus, they are considered in isolation and contain all code (including
those do not have Javadoc comments). There are 9,950 projects in
total. We select all 16,262,602 methods from these projects. For each
Java method, we extract a (method name, APl sequence, tokens)
triple to generate its code vector.

5.1.2 Query Subjects. To select code search queries for the eval-

uation, we adopt a systematic procedure used in [41]*. We build
a benchmark of queries from the top 50 voted Java programming
questions in Stack Overflow. To achieve so, we browse the list of
Java-tagged questions in Stack Overflow and sort them according to
the votes that each one receives®. We manually check the sorted list
sequentially, and add questions that satisfy the following conditions
to the benchmark:
(1) The question is a concrete Java programming task. We exclude
questions about problems, knowledge, configurations, experience
and questions whose descriptions are vague and abstract. For ex-
ample, Failed to load the JNI Library, What is the difference between
StringBuilder and StringBuffer?, and Why does Java have transient
fields?. (2) The accepted answer to the question contains a Java
code snippet. (3) The question is not a duplicate of the previous
questions. We filter out questions that are tagged as “duplicated”.

The full list of the 50 selected queries can be found in Table 1.
For each query, two developers manually inspect the top 10 results
returned by DEePCS and label their relevance to the query. Then
they discuss the inconsistent labels and relabel them. The procedure
repeats until a consensus is reached.

5.1.3 Performance Measure. We use four common metrics to
measure the effectiveness of code search, namely, FRank, Success-
Rate@k, Precision@k, and Mean Reciprocal Rank (MRR). They are
widely used metrics in information retrieval and the code search
literature [41, 45, 62, 79].

The FRank (also known as best hit rank [41]) is the rank of the
first hit result in the result list [62]. It is important as users scan
the results from top to bottom. A smaller FRank implies lower
inspection effort for finding the desired result. We use FRank to
assess the effectiveness of a single code search query.

The SuccessRate@k (also known as success percentage at k [41])
measures the percentage of queries for which more than one correct
result could exist in the top k ranked results [35, 41, 79]. In our
evaluations it is calculated as follows:

Q
SuccessRate@k = 1 Z S(FRankg < k) (13)
10| o=
where Q is a set of queries, d(-) is a function which returns 1 if the
input is true and 0 otherwise. SuccessRate@k is important because
a better code search engine should allow developers to discover the
needed code by inspecting fewer returned results. The higher the
metric value, the better the code search performance.

The Precision@k [45, 57] measures the percentage of relevant re-

sults in the top k returned results for each query. In our evaluations

“http://taoxie.cs.illinois.edu/racs/subjects.html
Shttp://stackoverflow.com/questions/tagged/java?sort=votes&pagesize=15

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

it is calculated as follows:
#relevant results in the top k results

Precision@k = P (14)
Precision@k is important because developers often inspect multiple
results of different usages to learn from [62]. A better code search
engine should allow developers to inspect less noisy results. The
higher the metric values, the better the code search performance.
We evaluate SuccessRate@k and Precision@k when k’s value is 1, 5,
and 10. These values reflect the typical sizes of results that users
would inspect [41].

The MRR [45, 79] is the average of the reciprocal ranks of results
of a set of queries Q. The reciprocal rank of a query is the inverse
of the rank of the first hit result [26]. MRR is calculated as follows:

1 19| 1
MRR= — Y —— (15)
0] qzzl FRankg

The higher the MRR value, the better the code search performance.

5.1.4 Comparison Methods. We compare the effectiveness of
our approach with CodeHow [45] and a conventional Lucene-based
code search tool [5].

CodeHow is a state-of-the-art code search engine proposed re-
cently. It is an information retrieval based code search tool that
incorporates an extended Boolean model and API matching. It first
retrieves relevant APIs to a query by matching the query with
the API documentation. Then, it searches code by considering both
plain code and the related APIs. Like DEEPCS, CodeHow also consid-
ers multiple aspects of source code such as method name and APIs.
It combines multiple aspects using an Extended Boolean Model [45].
The facts that CodeHow also considers APIs and is also built for
large-scale code search make it an ideal baseline for our experi-
ments.

Lucene is a popular, conventional text search engine behind
many existing code search tools such as Sourcerer [43]. Sourcerer
combines Lucene with code properties such as FQN (full qualified
name) of entities and code popularity to retrieve the code snippets.
In our implementation of the Lucene-based code search tool, we
consider the heuristic of FQN. We did not include the code popular-
ity heuristic (computed using PageRank) as it does not significantly
improve the code search performance [43].

We use the same experimental setting for CodeHow and the
Lucene-based tool as used for evaluating DEepCS.

5.2 Results

Table 1 shows the evaluation results of DEEPCS and related ap-
proaches for each query in the benchmark. The column Question 1D
shows the original ID of the question in Stack Overflow where the
query comes from. The column FRank shows the FRank result of
each approach. The symbol ‘NF’ stands for Not Found which means
that no relevant result has been returned within the top K results
(K=10).

The results show that DEEPCS produces generally more relevant
results than Lucene and CodeHow. Figure 8a shows the statistical
summary of FRank for the three approaches. The symbol ‘+ in-
dicates the average FRank value achieved by each approach. We
conservatively treat the FRank as 11 for queries that fail to obtain
relevant results within the top 10 returned results. We observe that
DEEPCS achieves more relevant results with an average FRank of

http://taoxie.cs.illinois.edu/racs/subjects.html
http://stackoverflow.com/questions/tagged/java?sort=votes&pagesize=15

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Benchmark Queries and Evaluation Results (NF: Not
Found within the top 10 returned results LC:Lucene CH:CodeHow
DCS:DeepCS)

Question FRank
Noi T | Quey LC[CH|DCS
1| 309424 | convert an inputstream to a string 2111
2| 157944 | create arraylist from array NF|NF| 2
3| 1066589 | iterate through a hashmap NF| 4 | 1
4| 363681 | generating random integers in a specific range NF| 6 | 2
5 | 5585779 | converting string to int in java NF| 10 | 1
6 | 1005073 | initialization of an array in one line NF| 4 | 1
7 | 1128723 | how can I test if an array contains a certain value 6|6 |1
8| 604424 | lookup enum by string value 1 |NF| 10
9| 886955 | breaking out of nested loops in java NF | NF | NF
10| 1200621 | how to declare an array NF|NF| 4
11| 41107 | how to generate a random alpha-numeric string NE[1|1
12| 409784 | what is the simplest way to print a java array 6 [NF| 1
13| 109383 | sorta map by values NF| 1|3

14| 295579 | fastest way to determine if an integer’s square root is an integer |NF | NF | NF

15| 80476 how can I concatenate two arrays in java NF| 1|1
16| 326369 | how do I create a java string from the contents of a file 8 [NF| 5
17| 1149703 | how can I convert a stack trace to a string 30112
18| 513832 | how do I compare strings in java 113]|1
19| 3481828 | how to split a string in java 111
20| 2885173 | how to create a file and write to a file in java 2| 1 |NF
21| 507602 | how can I initialise a static map 71112
22| 223918 | iterating through a collection, avoiding concurrentmodifica- | 3 | 3 | 2
tionexception when removing in loop
23| 415953 | how can I generate an md5 hash 316
24| 1069066 | get current stack trace in java 1)1
25| 2784514 | sort arraylist of custom objects by property 1|1
26| 153724 | how to round a number to n decimal places in java 1|4
27| 473282 | how canIpad an integers with zeros on the left 301
28| 529085 | how to create a generic array in java NF| 3
29| 4716503 | reading a plain text file in java NF| 7
30| 1104975 | a for loop to iterate over enum in java NF
31| 3076078 | check if at least two out of three booleans are true NF | NF
32| 4105331 | how do I convert from int to string 1 [NF

33| 8172420 | how to convert a char to a string in java
34| 1816673 | how do I check if a file exists in java

35| 4216745 | java string to date conversion

36| 1264709 | convert inputstream to byte array in java
37| 1102891 | how to check if a string is numeric in java
38| 869033 | how do I copy an object in java

39| 180158 | how do I time a method’s execution in java

O
z z z
cnZemuon oo ZE e e
Z
]

40| 5868369 | how to read a large text file line by line using java 1

41| 858572 | how to make a new list in java 1

42| 1625234 | how to append text to an existing file in java 301

43| 2201925 | converting iso 8601-compliant string to date 301

44| 122105 | what is the best way to filter a java collection NE| 9

45| 5455794 | removing whitespace from strings in java NF| 3

46| 225337 | how do I split a string with any whitespace chars as delimiters | 1 | 1

47| 52353 in java, what is the best way to determine the size of an object |NF| NF | NF
48| 160970 | how do I invoke a java method when given the method name | 3 | 1 | 2

as a string

49| 207947 | how do I get a platform dependent new line character 1 |NF| 10
50| 1026723 | how to convert a map to list in java 6 [NF| 1

3.5, which is smaller than the average FRank achieved by CodeHow
(5.5) and Lucene (6.0). The FRank values of DEEPCS concentrate on
the range from 1 to 4, while CodeHow and Lucene produce larger
variance and many less relevant results. Figure 8b, 8c and 8d show
the statistics of Precision@k for the three approaches when k is
1, 5 and 10, respectively. We observe that DEEPCS achieves better
overall precision values than CodeHow and the Lucene-based tool.

To test the statistical significance, we apply the Wilcoxon signed-
rank test (p<0.05) for the comparison of FRank and Precision@k
between DEEPCS and the two related approaches for all the queries.
We conservatively treat the FRank as 11 for queries that fail to
obtain relevant results within the top 10 returned results. The p-
values for the comparisons of DEEPCS with Lucene and CodeHow
are all less than 0.05, indicating the statistical significance of the
improvement of DEEPCS over the related approaches.

Table 2 shows the overall performance of the three approaches,
measured in terms of SuccessRate@k, Precision@k and MRR. The
columns R@1, R@5 and R@10 show the results of SuccessRate@k

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim

DeepCS oo o e DeepCS +
CodeHow + CodeHow +
Lucene } T Lucene + B
r T T T T T 1 r T T T T 1
0 2 4 6 8 10 12 0O 20 40 60 80 100
(a) FRank (b) Precision@1
DeepCS } """ I { DeepCS } """" L B ahe {
CodeHow o | codeHow N |
Lucene L { Lucene F s {
T T T T T 1 T T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
(c) Precision@5 (d) Precision@10

Figure 8: The statistical comparison of FRank and Precison@k for
three code search approaches
Table 2: Overall Accuracy of DEEPCS and the Related Approaches

Tool R@1|R@5 R@10|P@1|P@5 [P@10l MRR
Lucene 0.24 | 0.48 [0.620.24]0.24 [0.26 | 0.35
CodeHow 0.38 | 0.58 | 0.66 | 0.38 | 0.29 | 0.28 | 0.45
DEEPCS 0.46 | 0.76 | 0.86 | 0.46 | 0.50 [0.49 | 0.60

when k is 1, 5 and 10, respectively. The columns P@1, P@5 and
P@10 show the results of the average Precision@k over all queries
when k is 1, 5 and 10, respectively. The column MRR shows the
MRR values of the three approaches. The results show that DEEpCS
returns more relevant code snippets than CodeHow and Lucene.
For example, the R@5 value is 0.76, which means that for 76% of
the queries, the relevant code snippets can be found within the
top 5 return results. The P@5 value is 0.5, which means that 50%
of the top 5 results are deemed accurate. For the SuccessRate@k,
the improvements to CodeHow are 21%, 31% and 30%, respectively.
For the Precision@k, the improvements to CodeHow are 21%, 72%
and 75%, respectively. For the MRR, the improvement to CodeHow
is 33%. Overall, our approach improves the accuracy of related
techniques on all metrics.

5.3 Examples of Code Search Results

We now provide concrete examples of code search results that
demonstrate the advantages of DEEPCS.

Figure 9a and 9b show the results for two queries: queue an event
to be run on the thread and run an event on a thread queue. The
two queries have the same set of keywords with different word
sequences. The keyword queue in the two queries have different
meanings and it could be difficult for an IR-based approach to
distinguish. Still, DEEPCS can understand the meaning of the two
queries and return relevant snippets. Apparently, DEEPCS has the
ability to recognize query semantics.

The ability of query understanding enables DEePCS to perform
a more robust code search. Its search results are less affected by

Deep Code Search

public boolean enqueue(EventHandler handler, Event event) {
synchronized(monitor) {

handlers[tail] = handler;
events[tail] = event;

tail++;
if (handlers.length <= tail)
tail = 0;
monitor.notify();
}
return true;

¥

(a) The third result of the query “queue an event to be run on the
thread”

public void run() {
while (!stop) {
DynamicModelEvent evt;
while ((evt = eventQueue.poll()) != null) {
for (DynamicModellListener 1: listeners.toArray(
new DynamicModellListener[@]))
1.dynamicModelChanged(evt);

}
}

(b) The first result of the query “run an event on the thread queue”

Figure 9: Examples showing the query understanding

irrelevant or noisy keywords. For example, the query get the content
of an input stream as a string using a specified character encoding
contains 9 keywords. CodeHow returns many snippets that are
related to less relevant keywords such as specified and character.
DEEPCS, on the other hand, can successfully identify the importance
of different keywords and understand the key point of the query
(Figure 10).

Another advantage of DEEPCS relates to associative search. That
is, it not only seeks snippets with matched keywords but also rec-
ommends those without matched keywords but are semantically
related. This is important because it significantly increases the
search scope especially when the codebase is small. Besides, devel-
opers need snippets of multiple usages [62]. The associative search
provides more options of code snippets for developers to learn
from. Figure 11a shows the first result of the query read an object
from an xml file. As discussed in Section 1, traditional IR-based
approaches may only match snippets that contain keywords such
as xml, object and read. However, as shown in the figure, DEEPCS
successfully recognizes the query semantic and returns results of
xml deserialize, even the keywords do not exist in the result. By
contrast, CodeHow only returns snippets containing read, object
and xml, narrowing down the search scope. The example indicates
that DEePCS searches code by understanding the semantics instead
of just matching keywords. Similarly, the query initialization of an
arraylist in one line in Table 1 returns snippets containing “new
ArrayList()” although the snippet does not include the keyword
initialization. Figure 11b shows another example of the associative
search. When searching play a song. DEEPCS not only returns snip-
pets with matching keywords but also recommends results with
semantically related words such as audio and voice.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

public static String toStringWithEncoding(
InputStream inputStream, String encoding) {
if (inputStream == null)
throw new IllegalArgumentException(
"inputStream-should-not-be-null");

char[] buffer = new char[BUFFER_SIZE];

StringBuffer stringBuffer = new StringBuffer();

BufferedReader bufferedReader = new BufferedReader(

new InputStreamReader(inputStream, encoding), BUFFER_SIZE);
int character = -1;

return stringBuffer.toString();

}
Figure 10: An example showing the search robustness — The first
result of the query “get the content of an input stream as a string
using a specified character encoding”

public static < S > S deserialize(Class c, File xml) {

try {
JAXBContext context = JAXBContext.newInstance(c);
Unmarshaller unmarshaller = context.createUnmarshaller();
S deserialized = (S) unmarshaller.unmarshal(xml);
return deserialized;

} catch (JAXBException ex) {
log.error("Error-deserializing-object-from-XML", ex);
return null;

}

(a) The first result of the query “read an object from an xml file”

public void playVoice(int clearedLines) throws Exception {
int audiosAvailable = audiolLibrary.get(clearedLines).size();
int audioIndex = rand.nextInt(audiosAvailable);
audiolLibrary.get(clearedLines).get(audioIndex).play();

(b) The second result of the query “play a song”
Figure 11: Examples showing the associative search

6 DISCUSSIONS

6.1 Why does DeepCS Work?

We have identified three advantages of DEEPCS that may explain
its effectiveness in code search:

A unified representation of heterogeneous data Source code
and natural language queries are heterogeneous. By jointly embed-
ding source code and natural language query into the same vector
representation, their similarities can be measured more accurately.
Better query understanding through deep learning Unlike tra-
ditional techniques, DEEPCS learns queries and source code repre-
sentations with deep learning. Characteristics of queries, such as
semantically related words and word orders, are considered in these
models [27]. Therefore, it can recognize the semantics of query and
code better. For example, it can distinguish the query queue an event
to be run on the thread from the query run an event on the event
queue.

Clustering snippets by natural language semantics An advan-
tage of our approach is that it embeds semantically similar code
snippets into vectors that are close to each other. Semantically
similar code snippets are grouped according to their semantics.
Therefore, in addition to the exact matching snippets, DEEPCS also
recommends the semantically related ones.

6.2 Limitation of DeepCS

Despite the advantages such as associative search, DEEPCS could
still return inaccurate results. It sometimes ranks partially relevant
results higher than the exact matching ones. Figure 12 shows the
result for the query generate md>5. The exactly matching result is

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

public static byte[] generateRandom256() {
byte[] randomSeedl = ByteUtils.longToBytes(System.nanoTime());
byte[] randomSeed2 = (new SecureRandom()).generateSeed(KEY_SIZE_BYTES);
byte[] bhl = ByteUtils.concatenate(randomSeedl, randomSeed2);
Thread.sleep(100L);
byte[] randomSeed3 = UUID.randomUUID().toString().getBytes();
byte[] randomSeed4 = ByteUtils.longToBytes(System.nanoTime());
byte[] bh2 = ByteUtils.concatenate(randomSeed3, randomSeed4);
return simpleHash256(ByteUtils.concatenate(bhl, bh2));

)]
Figure 12: An example showing the inaccurate results — The first
result of the query “generate md5”

ranked 7 in the result list, while partially related results such as
generate checksum are recommended before the exact results. This
is because DEEPCS ranks results by just considering their semantic
vectors. In future work, more code features (such as programming
context) [58] could be considered in our model to further adjust the
results.

6.3 Threats to Validity

Our goal is to improve the performance of code search over GitHub,
thus both training and search are performed over GitHub corpus.
There is a threat of overlap between the training and search code-
bases. To mitigate this threat, in our experiments, the training and
search codebases are constructed to be significantly different. The
training codebase only contains code that has corresponding de-
scriptions, while the search codebase is considered in isolation and
contains all code (including those do not have descriptions). We be-
lieve the threat of overfitting for this overlap is not significant as our
training codebase considers a vast majority of code in Github. The
most important goal of our experiments is to evaluate DeepCS in a
real-world code search scenario. For that, we used 50 real queries
collected from Stack Overflow to test the effectiveness of DeepCS.
These queries are not descriptions/comments of Java methods and
are not used for training.

In our experiments, the relevancy of returned results were manu-
ally graded and could suffer from subjectivity bias. To mitigate this
threat, (i) the manual analysis was performed independently by two
developers and (ii) the developers performed an open discussion
to resolve conflict grades for the 50 questions. In the future, we
will further mitigate this threat by inviting more developers for the
grading.

In the grading of relevancy, we consider only the top 10 results.
Queries that fail are identically assigned with an FRank of 11 and
could be biased from the real relevancy of code snippets. However,
we believe that the setting is reasonable. In real-world code search,
developers usually inspect the top K results and ignore the remain-
ing. That means it does not make much difference if a code snippet
appears at rank 11 or 20 if K is 10.

Like related work (e.g., [14, 41]), we evaluate DEEPCS with popu-
lar Stack Overflow questions. SO questions may not be representa-
tive to all possible queries for code search engines. To mitigate this
threat, (i) DEEPCS is not trained on SO questions but on large scale
Github corpus. (ii) We select the most frequently asked questions
which might be also commonly asked by developers in other search
engines. In the future, we will extend the scale and scope of test
queries.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim

7 RELATED WORK
7.1 Code Search

In code search, a line of work has investigated marrying state-
of-the-art information retrieval and natural language processing
techniques [13-15, 32, 35, 41, 45-47, 61, 81, 82]. Much of the existing
work focuses on query expansion and reformulation [29, 31, 44]. For
example, Hill et al. [30] reformulated queries with natural language
phrasal representations of method signatures. Haiduc et al. [29]
proposed to reformulate queries based on machine learning. Their
method trains a machine learning model that automatically recom-
mends a reformulation strategy based on the query properties. Lu et
al. [44] proposed to extend a query with synonyms generated from
WordNet. There is also much work that takes into account code
characteristics. For example, McMillan et al. [47] proposed Portfolio,
a code search engine that combines keyword matching with PageR-
ank to return a chain of functions. Lv et al. [45] proposed CodeHow,
a code search tool that incorporates an extended Boolean model
and API matching. Ponzanelli et al. [61] proposed an approach that
automatically retrieves pertinent discussions from Stack Overflow
given a context in the IDE. Recently Li et al. [41] proposed RACS, a
code search framework for JavaScript that considers relationships
(e.g., sequencing, condition, and callback relationships) among the
invoked API methods.

As described in Section 6, DEEPCS differs from existing code
search techniques in that it does not rely on information retrieval
techniques. It measures the similarity between code snippets and
user queries through joint embedding and deep learning. Thus, it
can better understand code and query semantics.

As the keyword based approaches are inefficient on recognizing
semantics, researchers have drawn increasing attention on seman-
tics based code search [34, 65, 69]. For example, Reiss [65] proposed
the semantics-based code search, which uses user specifications to
characterize the requirement and uses transformations to adapt the
searching results. However, Reiss’s approach differs significantly
from DEEPCS. It does not consider the semantics of natural language
queries. Furthermore, it requires users to provide not only natu-
ral language queries but also other specifications such as method
declarations and test cases.

Besides code search, there have been many other information
retrieval tasks in software engineering [8, 9, 16, 23, 24, 29, 51, 55, 63,
67] such as bug localization [66, 73, 80], feature localization [19],
traceability links recovery [20] and community Question Answer-
ing [11]. Ye et al. [80] proposed to embed words into vector rep-
resentations to bridge the lexical gap between source code and
natural language for SE-related text retrieval tasks. Different from
DEEPCS, the vector representations learned by their method are at
the level of individual words and tokens instead of the whole query
sentences. Their method is based on a bag-of-words assumption,
and word sequences are not considered.

7.2 Deep Learning for Source Code

Recently, researchers have investigated possible applications of
deep learning techniques to source code [7, 38, 53, 56, 60, 64, 75, 76].
A typical use of deep learning is code generation [42, 54]. For exam-
ple, Mou et al. [54] proposed to generate code from natural language

Deep Code Search

user intentions using an RNN Encoder-Decoder model. Their re-
sults show the feasibility of applying deep learning techniques to
code generation from a highly homogeneous dataset (simple pro-
gramming assignments). Gu et al. [27] applies deep learning for
API learning, that is, generating API usage sequences for a given
natural language query. They also apply deep learning to migrate
APIs between different programming languages [28]. Deep learning
is also applied to code completion [64, 77]. For example, White et
al. [77] applied the RNN language model to source code files and
showed its effectiveness in predicting software tokens. Recently,
White et al. [76] also applied deep learning to code clone detection.
Their framework automatically links patterns mined at the lexical
level with patterns mined at the syntactic level. In our work, we
explore the application of deep learning to code search.

8 CONCLUSION

In this paper, we propose a novel deep neural network named CO-
DEnn for code search. Instead of matching text similarity, CODEnn
learns a unified vector representation of both source code and nat-
ural language queries so that code snippets semantically related
to a query can be retrieved according to their vectors. As a proof-
of-concept application, we implement a code search tool DEEPCS
based on the proposed CODEnn model. Our experimental study
has shown that the proposed approach is effective and outperforms
the related approaches. Our source code and data are available at:
https://github.com/guxd/deep-code-search

In the future, we will investigate more aspects of source code
such as control structures to better represent high-level semantics of
source code. The deep neural network we designed may also benefit
other software engineering problems such as bug localization.

9 ACKNOWLEDGMENT

The authors would like to thank Dongmei Zhang at Microsoft Re-
search Asia for her support for this project and insightful comments
on the paper.

REFERENCES

1] Camel case, https://en.wikipedia.org/wiki/camelcase.

2] Eclipse JDT. http://www.eclipse.org/jdt/.

3] Github. https://github.com.

] Keras. https://keras.io/.

] Lucene. https://lucene.apache.org/.

] Theano, http://deeplearning.net/software/theano/.

] M. Allamanis, H. Peng, and C. Sutton. A convolutional attention network for
extreme summarization of source code. In International Conference on Machine
Learning (ICML), 2016.

[8] J. Anvik and G. C. Murphy. Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions. ACM Transactions on Software
Engineering and Methodology (TOSEM), 20(3):10, 2011.

[9] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source code arti-
facts. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 375-384. ACM, 2010.

[10] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[11] O. Barzilay, C. Treude, and A. Zagalsky. Facilitating crowd sourced software
engineering via stack overflow. In Finding Source Code on the Web for Remix and
Reuse, pages 289-308. Springer, 2013.

[12] T.J. Biggerstaff, B. G. Mitbander, and D. E. Webster. Program understanding and
the concept assignment problem. Communications of the ACM, 37(5):72-82, 1994.

[13] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer. Example-centric

programming: integrating web search into the development environment. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

Eages 513-522. ACM, 2010.
. A. Campbell and C. Treude. NLP2Code: Code snippet content assist via natural

language tasks. arXiv preprint arXiv:1701.05648, 2017.

[14]

(15]

[16]

[17]

oy
&

[19

[20]

[21]

[22]

[24]

[25]

[26

(28]

[29

[30

(32]

[33

(34]

[35

[37

(38]

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

W.-K. Chan, H. Cheng, and D. Lo. Searching connected API subgraph via text
phrases. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, page 10. ACM, 2012.

O. Chaparro and A. Marcus. On the reduction of verbose queries in text retrieval
based software maintenance. In Proceedings of the 38th International Conference
on Software Engineering Companion, pages 716-718. ACM, 2016.

K. Cho, B. Van Merriénboer, C. Giilgehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder—decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724~1734, Doha, Qatar,
Oct. 2014. Association for Computational Linguistics.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12(Aug):2493-2537, 2011.

C.S. Corley, K. Damevski, and N. A. Kraft. Exploring the use of deep learning
for feature location. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 556-560. IEEE, 2015.

B. Dagenais and M. P. Robillard. Recovering traceability links between an api
and its learning resources. In 2012 34th International Conference on Software
Engineering (ICSE), pages 47-57. IEEE, 2012.

M. Feng, B. Xiang, M. R. Glass, L. Wang, and B. Zhou. Applying deep learning to
answer selection: A study and an open task. In 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), pages 813-820. IEEE, 2015.

A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. DeViSE:
A deep visual-semantic embedding model. In Advances in neural information
processing systems, pages 2121-2129, 2013.

X. Ge, D. C. Shepherd, K. Damevski, and E. Murphy-Hill. Design and evaluation
of a multi-recommendation system for local code search. Journal of Visual
Languages & Computing, 2016.

G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the pull-based
software development model. In Proceedings of the 36th International Conference
on Software Engineering, pages 345-355. ACM, 2014.

A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber.
A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence, 31(5):855-868, 2009.
M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby. A
search engine for finding highly relevant applications. In 2010 ACM/IEEE 32nd
International Conference on Software Engineering, volume 1, pages 475-484. IEEE,
2010.

X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep API learning. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (FSE’16), 2016.

X. Gu, H. Zhang, D. Zhang, and S. Kim. DeepAM: Migrate APIs with multi-modal
sequence to sequence learning. In Proceedings of the Twenty-Sixth International
Joint Conferences on Artifical Intelligence (IJCAI'17), 2017.

S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Menzies. Au-
tomatic query reformulations for text retrieval in software engineering. In
Proceedings of the 2013 International Conference on Software Engineering, pages
842-851. IEEE Press, 2013.

E. Hill, L. Pollock, and K. Vijay-Shanker. Improving source code search with nat-
ural language phrasal representations of method signatures. In Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software Engineering,
pages 524-527. IEEE Computer Society, 2011.

E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet. NL-based query refinement
and contextualized code search results: A user study. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on, pages 34-43. IEEE, 2014.

R. Holmes, R. Cottrell, R. . Walker, and J. Denzinger. The end-to-end use of
source code examples: An exploratory study. In Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on, pages 555-558. IEEE, 2009.

A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3128-3137, 2015.

Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun. Repairing programs with semantic
code search (T). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, pages 295-306. IEEE, 2015.

L. Keivanloo, J. Rilling, and Y. Zou. Spotting working code examples. In Proceedings
of the 36th International Conference on Software Engineering, pages 664-675. ACM,
2014.

Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

A.N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining deep
learning with information retrieval to localize buggy files for bug reports (n).
In Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on, pages 476-481. IEEE, 2015.

https://github.com/guxd/deep-code-search

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

[39]

[40]

[41]

[42]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Q. Le and T. Mikolov. Distributed representations of sentences and documents.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1188-1196, 2014.

M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 661-670. ACM, 2014.
X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, and H. Mei. Relationship-aware code
search for JavaScript frameworks. In Proceedings of the ACM SIGSOFT 24th
International Symposium on the Foundations of Software Engineering. ACM, 2016.
W. Ling, E. Grefenstette, K. M. Hermann, T. Kocisky, A. Senior, F. Wang, and
P. Blunsom. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744, 2016.

E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi. Sourcerer:
mining and searching internet-scale software repositories. Data Mining and
Knowledge Discovery, 18:300-336, 2009.

M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan. Query expansion via wordnet for
effective code search. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pages 545-549. IEEE, 2015.
F.Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and]. Zhao. CodeHow: Effective code
search based on API understanding and extended boolean model. In Proceedings
of the 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2015). IEEE, 2015.

C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie. Exemplar: A source
code search engine for finding highly relevant applications. IEEE Transactions on
Software Engineering, 38(5):1069-1087, 2012.

C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Portfolio: find-
ing relevant functions and their usage. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE’11), pages 111-120. IEEE, 2011.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent
neural network based language model. In INTERSPEECH 2010, 11th Annual
Conference of the International Speech Communication Association, Makuhari,
Chiba, Japan, September 26-30, 2010, pages 1045-1048, 2010.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111-3119, 2013.

1. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E. Hassan. A
large scale empirical study on software reuse in mobile apps. IEEE Software,
31(2):78-86, 2014.

D. J. Montana and L. Davis. Training feedforward neural networks using genetic
algorithms. In IJCAL volume 89, pages 762-767, 1989.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural networks
over tree structures for programming language processing. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, AAAI'16, pages 1287-1293.
AAALI Press, 2016.

L. Mou, R. Men, G. Li, L. Zhang, and Z. Jin. On end-to-end program generation
from user intention by deep neural networks. arXiv, 2015.

A. Nederlof, A. Mesbah, and A. v. Deursen. Software engineering for the web:
the state of the practice. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 4-13. ACM, 2014.

T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen. Exploring api
embedding for api usages and applications. In Proceedings of the 39th International
Conference on Software Engineering, pages 438-449. IEEE Press, 2017.

L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li. Query expansion based on crowd
knowledge for code search. IEEE Transactions on Services Computing, 9(5):771-783,
2016.

H. Niu, L Keivanloo, and Y. Zou. Learning to rank code examples for code search
engines. Empirical Software Engineering, pages 1-33, 2016.

H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. K. Ward. Deep
sentence embedding using the long short term memory network: Analysis and
application to information retrieval. CoRR, abs/1502.06922, 2015.

H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin. Building program vector rep-
resentations for deep learning. In Proceedings of the 8th International Conference
on Knowledge Science, Engineering and Management - Volume 9403, KSEM 2015,
pages 547-553, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

[61]

[62

[63

[73

[74]

[75]

(7]

(78]

[79]

[80

=
=

(82]

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim

L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza. Mining stackover-
flow to turn the ide into a self-confident programming prompter. In Proceedings
of the 11th Working Conference on Mining Software Repositories, pages 102-111.
ACM, 2014.

M. Raghothaman, Y. Wei, and Y. Hamadi. SWIM: synthesizing what I mean: code
search and idiomatic snippet synthesis. In Proceedings of the 38th International
Conference on Software Engineering, pages 357-367. ACM, 2016.

M. Rahimi and J. Cleland-Huang. Patterns of co-evolution between requirements
and source code. In 2015 IEEE Fifth International Workshop on Requirements
Patterns (RePa), pages 25-31. IEEE, 2015.

V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language

models. In In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2014.

S. P. Reiss. Semantics-based code search. In Proceedings of the 31st International
Conference on Software Engineering, pages 243-253. IEEE Computer Society, 2009.
M. Renieres and S. P. Reiss. Fault localization with nearest neighbor queries.
In Automated Software Engineering, 2003. Proceedings. 18th IEEE International
Conference on, pages 30-39, Oct 2003.

P. C. Rigby and M. P. Robillard. Discovering essential code elements in informal
documentation. In Proceedings of the 2013 International Conference on Software
Engineering, pages 832-841. IEEE Press, 2013.

J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination of software
engineering work practices. In CASCON First Decade High Impact Papers, pages
174-188. IBM Corp., 2010.

K. T. Stolee, S. Elbaum, and D. Dobos. Solving the search for source code. ACM
Transactions on Software Engineering and Methodology (TOSEM), 23(3):26, 2014.

L Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104-3112,
2014.

M. Tan, B. Xiang, and B. Zhou. Lstm-based deep learning models for non-factoid
answer selection. arXiv preprint arXiv:1511.04108, 2015.

J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th annual meeting
of the association for computational linguistics, pages 384-394. Association for
Computational Linguistics, 2010.

Y. Uneno, O. Mizuno, and E.-H. Choi. Using a distributed representation of words
in localizing relevant files for bug reports. In Software Quality, Reliability and
Security (QRS), 2016 IEEE International Conference on, pages 183-190. IEEE, 2016.
J. Weston, S. Bengio, and N. Usunier. Wsabie: scaling up to large vocabulary image
annotation. In Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, pages 2764-2770. AAAI Press, 2011.
M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk. Sorting
and transforming program repair ingredients via deep learning code similarities.
arXiv preprint arXiv:1707.04742, 2017.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning code frag-
ments for code clone detection. In Proceedings of the 31th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2016), 2016.

M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk. Toward deep
learning software repositories. In Mining Software Repositories (MSR), 2015
IEEE/ACM 12th Working Conference on, pages 334-345. IEEE, 2015.

R. Xu, C. Xiong, W. Chen, and J. J. Corso. Jointly modeling deep video and
compositional text to bridge vision and language in a unified framework. In
AAALI pages 2346-2352. Citeseer, 2015.

X. Ye, R. Bunescu, and C. Liu. Learning to rank relevant files for bug reports
using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 689-699. ACM, 2014.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. From word embeddings to docu-
ment similarities for improved information retrieval in software engineering. In
Proceedings of the 38th International Conference on Software Engineering, pages
404-415. ACM, 2016.

H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu. Bing developer
assistant: Improving developer productivity by recommending sample code. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016, pages 956-961. ACM, 2016.

J. Zhou and R. J. Walker. API Deprecation: A retrospective analysis and detection
method for code examples on the web. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering (FSE’16).
ACM, 2016.

	Abstract
	1 Introduction
	2 Background
	2.1 Embedding Techniques
	2.2 RNN for Sequence Embedding
	2.3 Joint Embedding of Heterogeneous Data

	3 A Deep Neural Network for Code Search
	3.1 Architecture
	3.2 Model Training

	4 DeepCS: Deep Learning based Code Search
	4.1 Collecting Training Corpus
	4.2 Training CODEnn Model
	4.3 Searching Code Snippets

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.3 Examples of Code Search Results

	6 Discussions
	6.1 Why does DeepCS Work?
	6.2 Limitation of DeepCS
	6.3 Threats to Validity

	7 Related Work
	7.1 Code Search
	7.2 Deep Learning for Source Code

	8 Conclusion
	9 Acknowledgment
	References

