
CodeKernel: A Graph Kernel based Approach to
the Selection of API Usage Examples

Xiaodong Gu1,3, Hongyu Zhang2, Sunghun Kim1,3

1Hong Kong University of Science and Technology, Hong Kong
2The University of Newcastle, Australia 3Clova AI Research, NAVER Corporation

1guxiaodong1987@126.com, hunkim@cse.ust.hk
2hongyu.zhang@newcastle.edu.au

Abstract—Developers often want to find out how to use a
certain API (e.g., FileReader.read in JDK library). API usage
examples are very helpful in this regard. Over the years,
many automated methods have been proposed to generate code
examples by clustering and summarizing relevant code snippets
extracted from a code corpus. These approaches simplify source
code as method invocation sequences or feature vectors. Such
simplifications only model partial aspects of the code and tend
to yield inaccurate examples.

We propose CodeKernel, a graph kernel based approach to
the selection of API usage examples. Instead of approximating
source code as method invocation sequences or feature vectors,
CodeKernel represents source code as object usage graphs. Then,
it clusters graphs by embedding them into a continuous space
using a graph kernel. Finally, it outputs code examples by
selecting a representative graph from each cluster using designed
ranking metrics. Our empirical evaluation shows that CodeKer-
nel selects more accurate code examples than the related work
(MUSE and EXOADOCS). A user study involving 25 developers
in a multinational company also confirms the usefulness of
CodeKernel in selecting API usage examples.

I. INTRODUCTION

API usage examples have shown importance in many soft-
ware engineering tasks such as API documentation [28], [37],
[47], [53], code search [21], and code completion [9], [33].
Developers frequently need to use APIs (e.g., FileReader.read
in JDK library) that they are unfamiliar with or do not
remember how to use. It is common practice for developers
to search for usage examples (i.e., sample code) to understand
the APIs. The API usage examples provide exemplar code
that demonstrates the typical usage of an API. Accurate and
understandable code examples can help developers overcome
obstacles caused by unfamiliar APIs [17], [28], [53].

Yet, acquiring accurate and understandable API usage ex-
amples is not without difficulty. The most common way is
to directly read manually written examples from API docu-
mentation. However, such examples are usually insufficient,
covering only a small portion of common APIs. There are a
large number of APIs (e.g., JDK has 86K+ APIs), which are
constantly evolving. It is time consuming for library develop-
ers to manually write examples for all of them. Furthermore,
API usage examples cannot answer programming questions
that are not directly related to a specific API. Another way
is to search from developer Q&A forums such as Stack

Overflow [4]. However, it is often difficult to find relevant
code for unpopular APIs or programming tasks. The answers
could be either too general or too detailed, and might not be
up-to-date [37]. Developers could also exploit code examples
using code search tools such as GitHub Search [1]. Yet,
the accuracy of answers is highly dependent on the search
engine. Users may encounter too many project-specific code
snippets extracted from open source projects. For example, a
search of “FileReader.read” over GitHub returned 93,691 Java
code snippets. It would be time-consuming to explore a large
number of project-specific code snippets to understand how
to implement this functionality. Therefore, it is desirable to be
able to automatically select a small yet effective code example.

Many approaches have been proposed to generate API usage
examples from a code corpus [10], [21], [36], [47], [53].
For example, MAPO [53] and UP-Miner [47] abstract code
snippets into method call sequences and mine usage patterns
by clustering similar sequences and mining frequent patterns
in each cluster. Kim et al. [21] proposed EXOADOCS which
approximates code snippets as AST element vectors. These
vectors are clustered and ranked according to their vecto-
rial similarities. The API usage examples are then selected
from the clusters. The aforementioned approaches simplify
source code as method call sequences or feature vectors.
Such simplifications only model partial aspects of the source
code. The structural information of the code such as control
structures and data dependency is lost. Therefore, these source
code representations could result in imprecise code similarity
measurement. The produced code examples are often inac-
curate and difficult for developers to reuse in programming
practice. Nguyen et al. proposed GrouMiner [36], which is
a graph-based approach to mine API usage patterns [33].
GrouMiner utilizes frequent pattern mining, which tends to
yield redundant results. Moreno et al. [28] proposed MUSE
which applies a code clone detection technique (Simian [2]) to
group code snippets and select code examples. MUSE could
produce redundant code examples as it is based on text-based
clones of code [44] instead of a source code abstraction.
We will describe more about the limitations of the existing
approaches in Section II.

To address the limitations of existing approaches, we pro-
pose a novel approach called CodeKernel, which is a graph

kernel based approach to the selection of API usage examples
from relevant code corpus. CodeKernel has two distinctive
characteristics:
• First, instead of abstracting source code into method

call sequences [47], [53], feature vectors [21] and raw
code [28], CodeKernel represents source code as object
usage graphs [36]. An object usage graph can be seen as
an abstraction of source code. It abstracts away syntacti-
cal details a raw code representation brings, but it keeps
complete information about code such as texts, structures,
sequences, and data dependencies.

• Second, instead of using frequent pattern mining [36]
or similarity heuristics [10], [21], CodeKernel clusters
the similar graphs through graph kernel [7], [8] which
embeds the graphs into a high-dimensional continuous
space. Such an embedding conserves full aspects of the
original graphs [6], thus is more accurate than methods
that are based on feature extraction or similarity heuris-
tics.

Given a code corpus (which consists of code snippets
from open source projects), CodeKernel first builds object
usage graphs for each function. It then clusters the graphs
through graph embedding. Finally, CodeKernel selects the
representative graph of each cluster using ranking metrics.

We empirically evaluated the accuracy of CodeKernel on 34
Java APIs. Our results show that CodeKernel’s code clustering
achieves an average F1-score of 0.79, outperforming two state-
of-the-art approaches (MUSE [28] and EXOADOCS [21]). In
a human study involving 25 developers in a multinational
company, 69% of our code examples were preferred over
the state-of-the-art technique, and 95% developers considered
CodeKernel useful for selecting API usage examples. The
results confirm the accuracy and usefulness of CodeKernel in
programming practices.

The main contributions of our work are as follows:
• To our knowledge, we are the first to apply a graph kernel

method to source code, which yields more accurate code
examples than the state-of-the-art techniques.

• We develop CodeKernel, a tool that generates API usage
examples. Our evaluation confirms the accuracy and
usefulness of the selected code examples.

II. MOTIVATION

In this section we show the motivation behind our approach
by reviewing the limitations of the state-of-the-art approaches.

A. Call Sequence based Methods

A number of techniques such as MAPO [53] and UP-
Miner [47] represent source code as method call sequences.
Figure 1 shows a screenshot of UP-Miner [47], an API usage
pattern mining approach based on call sequences. The example
in Figure 1 shows that, when both SqlConnection.new and
SqlConnection.createCommand occur, it is highly probable
that the API SqlConnection.Open will occur next. For a set of
call sequences that are relevant to an API method, UP-Miner
first performs clustering of the call sequences. It then mines

Fig. 1: an API usage pattern mined by UP-Miner

API usage patterns from each cluster using a frequent sequence
mining algorithm, and performs clustering again to group the
frequent sequences into patterns. Given a usage pattern, UP-
Miner also returns a list of code examples that contains the
pattern, ranked by their similarity values.

Although call sequences show effectiveness in character-
izing API usage patterns, they fail to capture the structural
information of the source code such as loops, branches
and third-party method invocations. Missing such information
could cause inaccurate calculation of code similarity, yielding
inaccurate API usage patterns.

B. Feature Vector based Methods

Instead of abstracting source code as API sequences, a
considerable number of existing approaches use feature extrac-
tion and similarity heuristics for source code [10], [21]. One
typical approach EXOADOCS [21] approximates the semantic
features of code as AST element vectors for clustering. The
AST element vector characterizes a fragment as occurrence
counts of single AST node types. However, like call sequences,
feature vectors are also insufficient to capture structural infor-
mation [34]. Figure 2 shows two code fragments of different
structures [34]. Unfortunately, they have very similar AST
element vectors (e.g., both contain four “type declarations”,
one “for statement”, one “if statement” and four “identifier
names” in their AST trees). They even have similar identifiers
(“x” and “n”) and data types (“int”). Thus, they could be
incorrectly clustered by EXOADOCS’s vector-based approach.

int sum (int x, n){
int s = 0;
for(int i = x; i<n; i++)

if (i%2==0)
s = s + i;

return s;
}

int power (int x, n){
int p = 0;
p = 1;
for(int i = x; i<n; i++)

p = p * x;
return p;

}

Fig. 2: Different fragments that have similar element vectors
of single node types [34]

C. Code Clone based Methods

MUSE [28] is a typical code example selection approach
which utilizes program slicing and text-based clone detection
technology. However, methods based on text based clone
detection could yield redundant examples, as they detect

Pattern 22

if (StringUtils.isBlank(pattern))
if (group.get("definition") != null) {
…
}

namedRegexCollection.put("name" + index,
(group.get("subname") != null ?
group.get("subname")
:group.get("name")));

Pattern 12

if (StringUtils.isBlank(pattern))
if (m.find()) {

…
namedRegex = StringUtils.replace(namedRegex, "%{"

+ group.get("name") + "}", "(?<name" + index +">"
+ grokPatternDef.get(group.get("pattern")) +")");

index++;
}

Pattern 23

if (StringUtils.isBlank(pattern))
if (group.get("definition") != null) {
…

}
namedRegexCollection.put("name" + index,

(group.get("subname") != null ?
group.get("subname") : group.get("name")));

if (namedRegex.isEmpty()) {
throw new GrokException("Pattern not fount");

}

Pattern 27

if (StringUtils.isBlank(pattern))
if (m.find()) {

…
namedRegex = StringUtils.replace(namedRegex, "%{"

+ group.get("name")+"}", "(?<name"+index +">"
+ grokPatternDef.get(group.get("pattern"))+")");

index++;
}

if (namedRegex.isEmpty()) {
throw new GrokException("Pattern not fount");

}

Fig. 3: Patterns minined by GrouMiner for the API
StringUtils.isBlank

type-1 and type-2 clones [44] over raw code instead of an
abstraction. The similarity measures between code snippets
could be adversely affected if the example contains too
much information that is specific to local context. Figure 4
shows code examples generated by MUSE for the Java API
FileUtils.writeStringToFile, which are directly extracted from
its website1. As we can see, the examples selected by

final FileInfo template;
final FileInfo filter;
final String outputBasePath;
String outputDir = createOutputDirectory(

template,filter,outputBasePath);
final String templateFilename = template.getFile().getName();
final String outputFilename = FilenameUtils.separatorsToSystem(

outputDir + templateFilename);
final String rawTempl = FileUtils.readFileToString(template.getFile());
final Properties properties = readFilterIntoProperties(filter);
final String processedTemplate = StrSub.replace(rawTemplate,properties);
//newFile(outputFilename) -> the file to write
//processedTemplate -> the content to write to the file
FileUtils.writeStringToFile(new File(outputFilename),processedTemplate);

Example 1

Example 6

public JobManagerConfiguration jobManagerConfiguration;
StringWriter results = new StringWriter();
File tempPBSFile = null;
String scriptContent = results.toString().replaceAll("^[|\t]*\n$","");
if(scriptContent.startsWith("\n"))
{

scriptContent = scriptContent.substring(1);
}
int number = new SecureRandom().nextInt();
number = (number < 0 ? -number : number);
tempPBSFile = new File(Integer.toString(number)

+ jobManagerConfiguration.getScriptExtension());
//tempPBSFile -> the file to write
//scriptContent -> the content to write to the file
FileUtils.writeStringToFile(tempPBSFile,scriptContent);

/**
* Location of repository.
*/
private final transient String path;
@NotNull final String name;
@NotNull final String content;
final File dir = new File(this.path);
final File file = new File(dir,name);
//file -> the file to write
//content -> the content to write to the file
FileUtils.writeStringToFile(file,content);

Example 10

Fig. 4: Excerpts of usage examples for the Java API FileU-
tils.writeStringToFile selected by MUSE [28]

MUSE contain much redundancy. In their results, example 1,
6 and 10 are presented as different examples because they

1https://github.com/lmorenoc/icse15-muse-appendix/blob/master/
commons-io-2.4/examples/writeStringToFile 29.html

Φ(·)

Φ(·)

Φ(·)

Φ(·)

Original Space Continuous Space

Fig. 5: Illustration of the kernel-based graph embedding

prepare file names (String) and contents (String) in different
ways. Example 1 reads a string content, and replaces it
with a filter. Example 6 removes special characters from a
string. Example 10 directly writes a string. However, from
developers’ perspective, different ways of preparing contents
(e.g., String.replaceAll, String.substring) are not related to the
API usage. They are specific to local context. In fact, all
the examples follow the same usage of the API: creating
a file with a filename (String), preparing a context (String),
then invoking the API FileUtils.writeStringToFile to write the
context to the file. Clone detection techniques are often specific
to such local context and could produce redundant examples.
A better approach should treat these examples as similar ones
and merge them into one example.

D. Graph based Frequent Pattern Mining

Representing source code as graphs could alleviate the
aforementioned problems as graphs are effective to carry struc-
tural information. GrouMiner [36] is a typical graph-based
approach that is successful for mining API usage patterns [33].
However, it is based on frequent pattern mining which tends to
suffer from the “high redundancy” problem, that is, patterns
could be subsets of other larger patterns [5], [47]. Figure 3
shows patterns returned by GrouMiner for the Java API
StringUtils.isBlank in the same code corpus of MUSE [28].
More results are available online1. We can see that many
patterns are redundant: Pattern 22 is a subset of Pattern 23, and
Pattern 12 is a subset of Pattern 27. Such redundancy incurs
extra effort for developers in finding patterns of interest. This
indicates that more improvement is required for graph-based
approaches, and graph clustering could be a better choice than
frequent pattern mining.

III. BACKGROUND

The limitations of the existing approaches require an ef-
ficient approach that allows manipulation of structural data
such as source code while being computationally cheap [6],
[45]. In this section, we review the kernel method, an efficient
technique to measure data similarities. In particular, we will
introduce graph kernel, a specific kernel method designed for
graphs.

A. Kernel Method for Similarity Measure

Suppose we have data in a space whose coordinates are
too difficult or expensive to compute (e.g., sequential data or

1 https://guxd.github.io/codekernelpre/preliminary.html

https://github.com/lmorenoc/icse15-muse-appendix/blob/master/commons-io-2.4/examples/writeStringToFile_29.html
https://github.com/lmorenoc/icse15-muse-appendix/blob/master/commons-io-2.4/examples/writeStringToFile_29.html
https://guxd.github.io/codekernelpre/preliminary.html

graphs). Our goal is to manipulate the data directly. Specif-
ically, we embed the original data into a high-dimensional,
continuous space where their inner products can be calculated
accurately and is computationally cheaper. Then, conventional
clustering methods can be applied directly to the embedded
data points.

The kernel method is an efficient and well-studied approach
to achieve such embedding [6], [45]. Figure 5 illustrates the
basic idea. The kernel method assumes that there exists a
transformation function Φ : S → T that maps data in the
original space S into a continuous space T . As we do not
know the explicit formulation of Φ, the transformed data in
space T is still implicit. Fortunately, there exists an important
principle that, the inner products of data in the space T can be
calculated simply by a kernel function defined in the source
space S [45]. That is, k(g1, g2) = Φ(g1) · Φ(g2). A kernel
function k : S × S → R is a function that satisfies mercer’s
conditions [45]. It enables us to operate non-vectorial data in a
continuous space by simply defining a function on the original
data. The embedding conserves full aspects of the original
data and is therefore more accurate than methods that extract
features from data [6]. Kernel functions have been introduced
for sequence data, graphs, text, images, as well as vectors [8],
[14], [50]. The most commonly used kernel functions include
the Gaussian kernel [6], [45], the linear kernel [6], [45] and
the polynomial kernel [6], [45].

B. Graph Kernel
Especially for graph data, there is a class of kernel functions

named graph kernel [7], [8]. Graph kernels are kernel functions
that compute inner products on graphs [8]. They can be
intuitively understood as functions that measure the similarities
of pairs of graphs. They enable kernelized learning algorithms
such as support vector machines to work directly on graphs,
without having to do feature extraction to transform them to
fixed-length, real-value feature vectors. Graph kernels have
seen successful applications in many areas such as chemoin-
formatics (e.g., molecule kernels [42]), bioinformatics [8], and
social network analysis [46].

In our approach, we employ a highly efficient and widely
used graph kernel, the shortest path graph kernel [7]. Given
two graphs, G1 and G2, their kernel is defined as:

k(G1, G2) =
∑

e1∈SD(G1)

∑
e2∈SD(G2)

kwalk(e1, e2) (1)

where SD(G) denotes a new graph which has the same nodes
as G. Each edge e = (u, v) in SD(G) is a new edge with
a weight being the shortest distance between u and v in
the original graph G. kwalk(e1, e2) represents the path kernel
which is defined as:

kwalk(e1, e2) = knode(u1, u2) · kedge(e1, e2) · knode(v1, v2)
(2)

where knode and kedge refer to kernel functions for comparing
two nodes or edges. We define a node kernel as:

knode(u1, u2) =

{
1, if label(u1)=label(u2), (3)
0, otherwise. (4)

API Query

API Usage Example

API List

Code Repository

Code Snippets

for Each API

Offline Processing

Code Example
Repository

CodeKernel

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = list();
a.append(‘’);

}

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a= array();
a.add(‘’”);

}

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = map();
a.put(1,‘’);

}

FileReader.read

void read(String fname) {
new FileReader(fname).
read();

}

Fig. 6: The application of CodeKernel to the selection of API
usage examples

which means that we assign a kernel value of one to two
nodes with identical labels, and assign zero to two nodes with
different labels. We define an edge kernel as a Brownian bridge
kernel [8] of edge weights. The Brownian bridge kernel has
shown good performance in many graph kernel studies [7],
[8]. It is defined as:

kedge(e1, e2) = max(0, c− |w(e1)− w(e2)|) (5)

where w returns the weight of an edge, and c is a positive
constant. The kernel means that we assign the highest kernel
value to edges that are identical in weight and assign zero
to edges that differ in weight by more than a constant c. We
empirically set c = 2 as it was validated and performed well
in [7], [8].

For each pair of graphs, we compute their kernel value
using Equation 1. This results in a positive definite kernel
matrix Kn×n where n is the number of graphs. Kernel matrix
is also known as inner-product matrix, which can be viewed
as a similarity matrix. It represents pair-wise inner products of
graphs in the new continuous space. The inner-product matrix
can be directly manipulated by machine learning algorithms
such as classification [8], [11] and clustering [24].

IV. APPROACH

Our primary lever for selecting code examples is to cluster
source code according to their usages and select typical
snippets from clusters. To accomplish this, we propose an
approach named CodeKernel, which models source code as
graphs and directly clusters the graphs using the graph kernel
method [29].

Figure 6 illustrates the application scenario of our ap-
proach. The offline processing is responsible for selecting
code examples. It gathers relevant code snippets for each
API and selects API usage examples using CodeKernel. At
runtime, for a given API query (such as FileReader.read),
it identifies and presents relevant code examples to users.
The overall pipeline of CodeKernel is shown in Figure 7.
It takes as input raw code corpus (i.e., code snippets from
open source projects or code search results) and outputs code
examples. The raw code is first transformed into object-usage
graphs [36]. Then, graphs are embedded into a continuous
space using the graph kernel method, resulting in an inner
product matrix. CodeKernel clusters the graphs in the new

②Graph
Embedding

③ Clustering①Graph
Construction

④ Example
Selection

Code Examples

𝑔1
𝑔2
…
𝑔𝑛

4.3 1.5 0.2
1.5
…

5.6
…

2.2
…

0.2 2.2 7.2

Code Snippets Graphs Graph ClustersInner-product Matrix

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = map();
a.put(‘’”);

}

void foo ()
{

a = map();
a.put(‘’”);

}

int power (int x, n){

int p = 0;

for(int i = x; i<n; i++)

p = p * x;

return p;

String print(int x, n){

String s = “Hello Word”;

for(int i = x; i<n; i++)

s = s + i + “number”;

return s;

Fig. 7: The workflow of CodeKernel

space by applying a clustering algorithm to the inner product
matrix. Finally, the representative graph of each cluster is
selected with ranking metrics and recovered as code examples.
These procedures are offline and the selected code examples
are returned in response to user’s queries (Figure 6).

We describe our approach using pseudo code in Algo-
rithm 1. The details are explained in the following sections.

A. Graph Representation for Source Code

We begin by representing source code as graphs. A graph
model contains information about text, sequence, structures,
and data dependencies hence is capable of representing a
complete aspect of source code. Meanwhile, it ignores the
syntactical details, so it is not sensitive to local contexts.

In particular, in our approach we employ the object usage
graph [36], which is a graph model for source code. Object
usage graph has proven to be successful in many software
engineering tasks such as object usage pattern mining [36],
code completion [33] and API recommendation [32]. An
object usage graph is a directed acyclic graph defined as
G = (V,E) where V stands for a set of nodes (controls,
actions, and data) and E ⊆ V × V denotes a set of edges
representing call sequences or data dependencies [36]. Each
node is associated with a label representing a class/method
name or a control unit [32].

Figure 8 illustrates an example of an object usage graph.
The action nodes such as StringBuffer.new and Buffere-
dReader.readLine stand for method calls or field accesses. The
data nodes such as StringBuffer and BufferedReader represent
objects of a class. The control nodes such as while represent
controls for branches or loops. There are two types of edges,
sequential edges and data edges. Sequential edges connect
nodes with strict orders. For example, BufferedReader.new
must be executed before BufferedReader.readLine. Data edges
connect a data node with action nodes if action nodes
use objects or parameters of the data node. For example,
BufferedReader.readLine and BufferedReader.close are con-
nected with data node BufferedReader since they both use the
object br defined in the data node.

To ease further computation, we represent each graph as
an adjacency matrix accompanied with a label vector. The
adjacency matrix is an n × n matrix, where n denotes the
number of nodes and each entry indicates the edge type
between the corresponding nodes. We set the entry to 0 if there
is no edge between two nodes, 1 if there is a sequential edge,
or 2 if there is a data edge. The label vector ` = 〈c1, ..., cn〉
is an n-dimensional vector, where n denotes the number of

1 StringBuffer sb=new StringBuffer();

2 BufferedReader reader =new BufferedReader(new FileReader(“ ”));

3 String line=“”;

4 while((line=reader.readLine())!=null)

5 sb.append(line+“\n”);

6 reader.close;

FileReader.new

BufferedReader.new

FileReader

BufferedReader

StringBuffer.new StringBuffer

BufferedReader.readLine

while

StringBuffer.append

BufferedReader.close

0 2
0 0

1 0
0 0

0 0
0 0

0 2
0 0

0 0
0 0

0 0 0 0
0 0 2 0

1 0
2 0

0 0 0 0
0 0 0 0

0 0
0 0

0 0
0 0

0 0
0
0
0

0
0
0

0 0
0
0
0

0
0
0

0 2
0 0

1 0 0 0
2 0 0 2

0 0
0
0
0

0
0
0

0 1 0 0
0
0
0

0
0
0

1
0
0

0
1
0

+

[0 1 2 3 4 5 6 7 8 9]

…..

Fig. 8: Schematic illustration of graph generation from source
code

Algorithm 1 High-level pseudo code of CodeKernel
Input:

Code Corpus Corp
Output: Code Examples examples

1: graphs← BuildGraphs(Corp)
2: let Kn×n ← [0]n×n

3: for all graph pair < gi, gj >∈ graphs do
4: Ki,j ← GraphKernel(gi, gj)
5: end for
6: clusters← SpectralClustering(K)
7: let examples← ∅
8: for all C∈clusters do
9: repr←SelectRepr(C,K)

10: examples←examples∪ CodeRecover(C,repr)
11: end for
12: examples←Rank(examples)
13: return examples

nodes in the graph, and each ci refers to the global index of
the label for the i-th node.

In our experiments, we generate object usage graphs by
applying GrouMiner [36] at the function level (Line 1, Alg. 1).

B. Graph Embedding

With the graph representation, we compute pairwise simi-
larities between graphs for clustering (Line 3-5, Alg. 1).

Instead of extracting graph features [34] such as AST
element vectors [21], n-grams [47], [32], and statement se-

quences [10], we do direct computation over graphs. Specif-
ically, we employ the graph kernel to embed the original
graphs into a high-dimensional, continuous space in which
their inner products can be accurately calculated while being
computationally cheap.

For each pair of object usage graphs, we compute their
kernel value using Equation 1. This results in a positive
definite kernel matrix KN×N with Kij being the kernel
value between graph i and j and N representing the number
of graphs. Kernel matrix can be considered as a similarity
matrix which represents pair-wise similarities (inner products)
between graphs in the new continuous space. We implement
graph kernel by adopting Borgwardt’s code in Matlab [46].

C. Graph Clustering

After embedding graphs into a continuous space, we cluster
graphs in the new space (Line 6, Alg. 1). We employ a typical
clustering algorithm in machine learning, namely spectral
clustering [12]. The most important reason we use the spectral
clustering is that it fits our data well. In our problem, data in
the continuous space is not vectorial. Therefore, algorithms
that require vectorial inputs such as K-means, Gaussian mix-
ture model and EM are not applicable. Spectral clustering, on
the other hand, takes as input similarity pairs instead of vec-
tors. The pairwise inner products embedded in the new space
are exactly suitable for the algorithm. Spectral clustering also
outperforms other clustering algorithms in many tasks [12],
[51].

In our approach, the spectral clustering algorithm takes as
input the kernel matrix generated by graph embedding and
performs clustering. We adopt a tool named Spectral Clusterer
for Weka [3] in our implementation.

D. Example Selection

After clustering, CodeKernel selects code examples from
code clusters (Line 7-13, Alg. 1). For each cluster, the al-
gorithm first selects a representative graph according to the
designed ranking metrics. Then, it presents a code example
by recovering the original code of the selected graph.

1) Rank Metrics: We design two ranking metrics for se-
lecting a representative graph for each cluster.

Centrality We first want the representative graph to be as
generic as possible in the cluster. That is to say, the graph
should have high similarity to other graphs in the cluster.
Inspired by a clustering algorithm, K-medoids [39], we define
a metric Centrality, which measures the average distance from
a graph to other graphs in the cluster. For each graph gi in a
cluster C, the centrality is defined as:

centralityi = 2× sigmoid(
1

|C|
∑

gj∈C,j 6=i

Ki,j)− 1 (6)

where sigmoid is a commonly used function to normalize
values to the interval of [0, 1] [18]. The higher the centrality
of gi, the more generic gi is in the cluster.

Specificity The graphs with high centralities may tend to be
the larger graphs since they are more likely to be similar to

others. Unfortunately, larger graphs tend to have more specific
elements (i.e., edges that are rare in the cluster), making the
code example difficult to understand. To penalize graphs with
too many specific edges, we also design the Specificity metric.
For each graph gi in a cluster C, the Specificity is defined as:

specificityi = 2× sigmoid(
1

|Egi |
∑
e∈gi

widf (e))− 1 (7)

where |Egi | denotes the number of edges in gi, sigmoid is
a normalization function [18], and widf (e) represents the IDF
(Inverse Document Frequency) weight of edge e. The IDF
weight measures the rareness of each edge, which is defined
as

widf (e) = log(
|C|
Ne

) (8)

where |C| denotes the cluster size, Ne is the number of times
that edge e appears in the cluster C. The more specific the
edges, the higher specificity a graph has.

2) Representative Graph Selection: With the two ranking
metrics, we select a representative graph from each cluster.
We first define a ranking score for each graph in a cluster as:

score = centrality− γ · specificity (9)

where γ stands for a parameter to control the penalty of
specificity. We empirically set γ=0.2. Then, we rank graphs
in a cluster according to their ranking scores and select the
graph with the largest score as the representative graph.

Finally, for the selected graphs, we recover their original
code and rank them according to the sizes of clusters they
belong to. The examples from larger clusters are ranked with
higher priorities than those from smaller ones.

V. EMPIRICAL EVALUATION

We verify the proposed CodeKernel model for code example
selection in two aspects: accuracy and usefulness. Specifically,
our evaluation addresses the following research questions:
• RQ1: How accurate are the API usage examples

selected by CodeKernel?
• RQ2: How useful is CodeKernel for selecting API

usage examples?
• RQ3: Does graph kernel help improve the graph

clustering performance ?

A. Accuracy of Selected Examples(RQ1)

Accuracy is the key aspect of evaluating API example
selection. Inaccurate examples may have large redundancy and
low recall, so developers must examine a large number of
results to find useful API examples.

1) Accuracy of Code Clustering: We first evaluate CodeK-
ernel’s accuracy in code clustering, namely, assigning relevant
code snippets to the same example. This is important because
it determines the succinctness and recall of final examples.

We selected a few typical Java APIs, run CodeKernel for
each API, and compare the clustering accuracy against the
baseline methods. Table I lists the selected APIs for RQ1 and
their statistics. They are widely used in the corpus provided

TABLE I: Summary of selected APIs for evaluating the
accuracy of code clustering (RQ1-task1)

Selected APIs Library Code Corpus # of
snippets

#API
usages

FileUtils.writeStringToFile

commons-io2.4 86 projects
used in [28]

12 4
IOUtils.toString 23 11
FilenameUtils.normalize 6 2
FileUtils.forceMkdir 8 2
IOUtils.toByteArray 10 5
StringUtils.isBlank commons-lang3 53 projects

used in [28]
25 2

StringUtils.isNotBlank 24 1
Servant. poa CORBA

top 200 results
by [21]

78 8
Window.pack java.awt 48 12
Driver.connect java.sql 40 13
Properties.loadFromXML java.util 32 11
PrinterJob.pageDialog java.awt 67 11
Graphics2D.fill java.awt 51 14
SelectableChannel.register java.nio 49 7

by the baseline methods. The colunm Code Corpus shows
the code corpus that the API usage examples are selected
from. The # snippets column shows the number of methods
in the code corpus that use the corresponding API. The last
column # API usage shows the number of usages of each
API in the code corpus. They are determined according to our
manual labels to be introduced.

Accuracy Measure: We measure the clustering accuracy
with F1-score. The F1-score is a widely used accuracy measure
for clustering in the data mining literature [26], [27], [40], [43].
It treats clustering results as a series of decisions, one for each
of the N(N−1)/2 pairs of the instances [26]. For example, if
there are 4 snippets {s1, s2, s3, s4}, which belong to cluster
{A, A, B, C}, respectively. To evaluate a clustering method, we
compare 4×3/2=6 times, for the pairs 〈s1,s2〉, 〈s1,s3〉, 〈s1,s4〉,
〈s2,s3〉, 〈s2,s4〉 and 〈s3,s4〉. If a clustering method outputs {A,
A, A, C}, we can see that the pairs 〈s2,s3〉 and 〈s1,s3〉 are
grouped incorrectly. A clustering algorithm aims to assign two
snippets to the same cluster if and only if they are similar. A
true positive (TP) decision assigns two similar snippets to the
same cluster whereas a true negative (TN) decision assigns two
dissimilar snippets to different clusters. There are two types
of errors it can make. A false positive (FP) decision assigns
two dissimilar snippets to the same cluster. A false negative
(FN) decision assigns two similar snippets to different clusters.
F1-score is defined as:

F1 =
2× P ×R
P +R

(10)

where P = TP
TP+FP and R = TP

TP+FN [26]. The P-
value measures the precision of assigning snippet pairs to
clusters. A higher precision means less FPs, indicating that
a smaller number of dissimilar snippets are assigned to the
same cluster. Therefore, a higher P-value indicates higher
coverage of clustering. The R-value measures the recall of
cluster assignments of snippet pairs. A higher recall means
less FNs, which indicates that a smaller number of similar
snippets are assigned to different clusters. Therefore, a higher
R-value indicates less redundancy in clustering.

To evaluate the accuracy of the clustering methods, we need
the ground truth clusters for each API. In our experiments,

TABLE II: F1-scores of CodeKernel and MUSE

API MUSE CodeKernel
P R F1 P R F1

FileUtils.writeStringToFile ≤0.60 ≤0.21 ≤0.31 0.68 0.45 0.54
IOUtils.toString ≤0.51 ≤0.53 ≤0.52 0.80 0.56 0.66
FilenameUtils.normalize 0 0 0 0.60 0.60 0.60
IOUtils.toByteArray ≤0.80 ≤0.44 ≤0.57 1.0 0.67 0.80
FileUtils.forceMkdir ≤1.0 ≤0.38 ≤0.55 0.71 0.94 0.81
StringUtils.isBlank ≤1.0 ≤0.51 ≤0.67 0.92 1.00 0.96
StringUtils.isNotBlank ≤1.0 ≤0.44 ≤0.61 1.0 1.0 1.0
Average ≤0.70 ≤0.36 ≤0.46 0.82 0.75 0.77

we manually labeled ground truth clusters for the raw code
snippets that contain the APIs under study. To reduce the
labeling bias, two developers independently labeled examples
in the original corpus. Then, they discussed for disagreements
and relabeled again until agreements are reached.

Baselines: We compare the accuracy of our approach
against MUSE [28] and EXOADOCS [21]. Clone detection is
a widely studied task utilizing code similarity measure and
MUSE is a successful clone-based approach for code example
selection. EXOADOCS is the state-of-the-art code example
selection approach which clusters and ranks code snippets with
similarity heuristics such as distances between AST element
vectors. As we cannot obtain the original implementation
of MUSE and EXOADOCS3, to facilitate comparison, we
collected the code corpus stated in their papers as well as the
raw results produced by their tools4. We then run CodeKernel
to select code example for the selected APIs (Table I) from the
same code corpus provided by each paper. Finally we compare
our results with the published code examples of MUSE and
EXOADOCS. For MUSE, as we can only obtain the selected
code example for each cluster from its published results, we
cannot compute the exact P, R and F1 values. To this end, we
make a relaxation by assuming that all the missing examples
are assigned to a correct group. Specifically, we assign missing
code examples to the corresponding groups according to their
ground truth labels. Therefore, the P, R and F1 values we
compare against are upper bounds.

Results: Table II and III show the accuracy results of
MUSE, EXOADOCS and CodeKernel. As the results indicate,
CodeKernel yields code examples with higher coverage and
less redundancy, with average P and R values of 0.86 and 0.76
respectively, which are greater than those of MUSE (P≤0.7,
R≤0.36) and EXOADOCS (P=0.31, R=0.67). Overall, CodeK-
ernel outperforms MUSE and EXOADOCS for all studied
APIs, with an average F1-score of 0.79, which is significantly
greater than that of MUSE (0.46) and EXOADOCS (0.39). The
results confirm the effectiveness of the clustering method used
by CodeKernel.

2) Accuracy of Example Selection: We also evaluate the
accuracy of CodeKernel in selecting representative examples

3The EXOADOCS website was down and the authors no longer maintain
the code, but one of them kept the code corpus as well as the raw results.

4MUSE published an API documentation in their website https://github.
com/lmorenoc/icse15-muse-appendix. The documentation includes their raw
results of API examples. Results and code corpus of EXOADOCS are provided
by its authors, and are the same as what used in their paper [21].

https://github.com/lmorenoc/icse15-muse-appendix
https://github.com/lmorenoc/icse15-muse-appendix

TABLE III: F1-scores of CodeKernel and EXOADOCS

API EXOADOCS CodeKernel
P R F1 P R F1

Servant. poa 0.58 0.48 0.53 0.92 0.97 0.94
Window.pack 0.49 0.80 0.61 0.82 0.93 0.87
Driver.connect 0.42 0.85 0.56 0.90 0.99 0.94
Properties.loadFromXML 0.08 0.34 0.13 1.0 0.55 0.71
PrinterJob.pageDialog 0.21 0.83 0.34 0.92 0.94 0.93
Graphics2D.fill 0.12 0.79 0.20 0.74 0.53 0.62
SelectableChannel.register 0.28 0.62 0.38 1.0 0.46 0.63
Average 0.31 0.67 0.39 0.90 0.77 0.81

from each code cluster(Section IV-D2). As the ranking of code
examples could be subjective, we conducted a user study to
evaluate the accuracy. The user study involved 25 developers
in a multinational company M, all having more than 2 years
of programming experiences.We randomly selected 10 Java
APIs that are not too simple nor too common5. Participants
were asked to read API examples selected by CodeKernel as
well as the code snippets in the corresponding clusters where
the examples were selected. Then, they were asked to rate the
representativeness of the selected representative example in
each cluster. Possible answers fall in a five-point Likert scale
(5 very accurate, 4 accurate, 3 neither, 2 inaccurate, and 1
totally inaccurate).

The results show that developers gave high ratings for the
accuracy. 94% developers graded a high accuracy (with a score
of 4 or 5). The average rating score was 4.1, indicating overall
positive feedback.�
�

�
�

The code examples selected by CodeKernel have less
redundancy and higher coverage than those selected by
the state-of-the-art techniques, and are representative.

B. Evaluation of the Usefulness of the Selected API Usage
Examples(RQ2)

We conducted a user study to investigate developers’ per-
ceived usefulness of API usage examples selected by CodeK-
ernel. The study involved the same participants as described in
Section V-A2. It consists of two tasks on 20 randomly selected
APIs6:

Task 1: (Questionnaire) Each participant was required to
read API usage examples selected by CodeKernel6. These
APIs were selected randomly from those that have examples in
JDK or in popular tutorial websites. Then, they were required
to answer the following question about the usefulness of
the examples: Overall, are the selected examples useful for
understanding API usages? It has five answer options (5 very
useful, 4 useful, 3 neither, 2 not useful and 1 totally not useful).

Figure 9 shows the statistic of developers’ perceived useful-
ness in this task. Overall, developers gave a high rating of use-
fulness. The average rating was 4.5, indicating overall positive
feedback from developers. 95% of the developers thought that
CodeKernel is useful for understanding API usages. Among

5The full list of Java APIs is in our project website at
https://codekernel19.github.io

6The studied Java APIs are in our project website at
https://codekernel19.github.io/appendix.html

Very
Useful
38%

Useful
57%

Not
Useful

5%

Fig. 9: The results of user study

0

5

10

15

20

25

vo
te
s

CodeKernel eXoaDoc Similar

Fig. 10: Feedback on tool comparison

them, 38% strongly agreed with the usefulness. The feedback
indicates that developers appreciate our CodeKernel tool.

Task 2: (Tool Comparison) Each participant was required
to read API usage examples selected by two tools: CodeKernel
and EXOADOCS. We hid the names of the two tools and asked
participants to evaluate 10 pairs of API usage examples6,
each corresponding to a randomly selected API. They were
required to select a tool that produces better examples for the
corresponding API and select “similar” if they consider both
producing examples of the same quality. Figure 10 shows the
statistic of tool comparison feedback. For 9 out of 10 pairs, the
usage examples generated by CodeKernel are considered more
useful by the developers. CodeKernel has overwhelming votes
for most of the APIs. Among all the votes, 69% developers
considered CodeKernel’s code examples better than those of
EXOADOCS, and 13% considered they were similar. Only 18%
developers thought that EXOADOCS’s code examples were
better. The results show that developers consider CodeKernel
more useful than the state-of-the-art techniques.�
�

�
�

Developers feedback indicates that the API usage
examples selected by CodeKernel are useful.

C. Graph Kernel’s Performance on Graph Clustering (RQ3)

As the most distinctive feature of our approach is the graph
kernel based clustering method, we also evaluate whether
the graph kernel technique helps improve the graph cluster-

https://codekernel19.github.io
https://codekernel19.github.io/appendix.html

TABLE IV: F1-scores of code clustering by different graph
similarity methods

API Baseline Graph Kernel
P R F1 P R F1

FileUtils.writeStringToFile 0.72 0.45 0.55 0.68 0.45 0.54
IOUtils.toString 0.44 0.19 0.27 0.80 0.56 0.66
FilenameUtils.normalize 0 0 0 0.60 0.60 0.60
IOUtils.toByteArray 1.0 0.11 0.20 1.0 0.67 0.80
FileUtils.forceMkdir 1.0 0.31 0.48 0.71 0.94 0.81
StringUtils.isBlank 0.92 1.0 0.96 0.92 1.00 0.96
StringUtils.isNotBlank 1.0 0.25 0.40 1.0 1.0 1.0
Average 0.73 0.33 0.41 0.82 0.75 0.77

ing performance. To this end, we replace the graph kernel
component (described in Section IV-B) in CodeKernel with a
component which directly measures graph similarities using a
conventional similarity measure:

Sim(G1, G2) =
|E1

⋂
E2|

min(|E1|, |E2|)
(11)

where E denotes the set of edges in G. This measure is used
in [22]. Basically, this equation measures the ratio of common
edges of two graphs.

We compare the clustering performance of both schemes,
that is, CodeKernel with graph kernel and CodeKernel using
the baseline graph similarity measure. We use the same
experimental setup as in RQ1.

Table IV shows the accuracy results of both schemes. As
the results indicate, CodeKernel with graph kernel leads to
better performance than using the baseline graph similarity
measure. The graph kernel technique obtains an 88% relative
improvement in terms of F1-score over the baseline method.�

�
�
�

Graph kernel can significantly improve code
clustering performance.

VI. DISCUSSION

A. An Example

We now present a concrete API usage example selected by
CodeKernel. We will also discuss the limitations and present
ideas for future improvement.

Figure 11 lists an excerpt of code example selected by
CodeKernel for the API FileUtils.writeStringToFile. These
results come from a cluster consisting of 6 instances. The Ex-
ample 1 at the top is the selected representative of the cluster.
The code snippets below (Instances 1 to 3) are instances in
that cluster. These instances are clustered together as they all
follow the same pattern File.new, FileUtils.writeStringToFile.
The first instance is selected as an example as it has high sim-
ilarities to other instances and does not contain many project-
specific nodes. We can see improvement when comparing our
examples against those selected by MUSE (Figure 4). First,
all the instances we consider to be the same are clustered
together by CodeKernel, which means CodeKernel can provide
less redundant API usage examples to developers. In addition,
the representative graph selected by CodeKernel contains less

context-specific information, which means our examples are
more readable.

……

Repo.add(final String name, final String content){
final File dir = new File(this.path);
final File file = new File(dir, name);
FileUtils.writeStringToFile(file, content);
this.git.exec(dir, "add”, name);

}

Instance 1
Centrality↓:0.8085 Specificity↑:0.4202

GSISSHAbstractCluster.submitBatchJob(JobDescriptor jobDescriptor){
int number = new SecureRandom().nextInt();
number = (number < 0 ? -number : number);
tempPBSFile = new File(Integer.toString(number)

+ jobManagerConfiguration.getScriptExtension());
FileUtils.writeStringToFile(tempPBSFile, scriptContent);

}

Instance 2
Centrality↓:0.7777 Specificity↑:0.5648

ConfigGenerator.generateConfig(FileInfo template, FileInfo filter,
String outputBasePath, StrSubstitutor strSub,
Map<String,Set<String>> missPropertiesByFilename,
boolean missingPropertyFound) {
String rawTempl = FileUtils.readFileToString(template.getFile());
Properties properties = readFilterIntoProperties(filter);
String processedTemplate = StrSub.replace(rawTempl, properties);
FileUtils.writeStringToFile(new File(outputFilename), processedTem

plate);
}

Instance 3
Centrality↓:0.7739 Specificity↑:0.6023

Example 1 [from 6 instances]
Centrality↓:0.8085 Specificity↑:0.4202

Repo.add(final String name, final String content){
final File dir = new File(this.path);
final File file = new File(dir, name);
FileUtils.writeStringToFile(file, content);
this.git.exec(dir, "add”, name);

}

Fig. 11: The code example for the API FileU-
tils.writeStringToFile yielded by CodeKernel

Still, CodeKernel has limitations and could yield incomplete
results. It may not exhibit the complete data flow. For example,
in Example 1 shown in Figure 11, the definition of the
field reference this.path is not included in the sample code,
developers need to browse the original source code file to
understand its definition. Furthermore, the selected examples
could contain project-specific identifiers and statements, such
as this.git.exec(...) and content. The project-specific statements
should be trimed and the name of the identifiers can be
normalized. In the future, we will perform more advanced
program analysis on the sample code to further improve the
completeness and readability of the code. Particularly, we will
investigate the synthesis of sample code directly from the
selected object usage graph.

B. Why does CodeKernel work?

A fundamental challenge to mining source code is that,
source code is not continuous data. It is discrete, structural and
composite. There is no explicit coordinate and vector that can
fully characterize it. Therefore, code similarities are difficult to
compute. Existing approaches try to make it continuous either
by feature extraction which transforms code to fixed-length,
real value feature vectors, or by similarity heuristics. However,
the feature vectors they extracted just approximate partial
information of the code (e.g., tokens [47], AST elements [21],

orders [10] and topics [23]). Therefore, these approaches often
lead to inaccurate code examples.

Our approach addresses such challenge by directly embed-
ding the graph representation of source code into a continuous
space without explicit feature extraction. The graph embedding
conserves full aspects of the original graphs and is more
accurate than methods that extract feature vectors from code.

VII. THREATS TO VALIDITY

As a proof of concept, all APIs and related projects inves-
tigated in our experiments are written in Java. Although Java
is one of the most popular programming languages, it might
not be representative of APIs written in other languages such
as Python. However, CodeKernel is not limited to a certain
language as it operates on software graphs which can be
extracted from most languages. Evaluating our tool for other
languages remains our future work.

In the evaluation of cluster accuracy, we compared our re-
sults with those of related methods (MUSE and EXOADOCS).
However, the tool implementations of the related methods
were unavailable to us. So in our comparison, we had to use
the published results and datasets as the related methods used,
which are relatively small in scope. In the future, we will re-
implement the related methods and conduct empirical studies
on more datasets to further evaluate these tools.

In our work, we perform user studies to evaluate the
accuracy and usefulness of the selected API usage examples.
Although our user studies involved 25 developers, the scope of
the experiments is still limited. Furthermore, the participants
examined a small number (10) of APIs. Therefore, our user
studies could introduce bias. In the future, we will perform
large-scale user studies involving more participants and APIs.

VIII. RELATED WORK

A. Code Example Selection

Code example selection has shown to be important in many
software engineering tasks, such as API documentation [28],
[37], [47], [52], [53], code search [25], [20], [21], and code
completion [9], [33]. The mainstreaming technical direction
to select code example is to cluster relavant code snippets
according to similarity heuristics, and rank or synthesize an
example from each cluster. For example, Kim et al. [21]
proposed EXOADOCS, which clusters and ranks code snippets
according to their distances between AST element vectors.
Buse and Weimer proposed to represent code snippets as
CFGs, and cluster them according to their similarities of
statement ordering and data type usages [10]. However, the
simplified feature vectors only approximate partial aspects of
the code (e.g., tokens [47], AST elements [21], orders [10],
and topics [23]). Therefore, their approaches tend to produce
inaccurate code examples. Different from the aforemensioned
approaches, CodeKernel clusters graphs by embedding them
to a continuous space. The graph embedding keeps full aspects
of original graphs [6] and is more accurate than methods that
extract feature vectors from code.

Another line of work has investigated marrying state-of-the-
art code clone and sample selection techniques. For example,
Moreno et al. proposed MUSE [28] that selects usage exam-
ples of a given method by slicing out relevant snippets from
code corpus and identifying similar examples through text-
based clone detection [44]. CodeKernel differs from MUSE
in that it clusters similar code snippets at an abstract usage
level.

Recently, there is also much work that utilizes statistical
machine learning and deep learning [38], [30]. For example,
Nguyen et al. proposed API code recommendation using
statistical learning from fine-grained changes [30]. They also
proposed a deep neural network language model with con-
texts for source code [31]. CodeKernel differs from these
approaches in that it directly embeds exact graphs without
learning and statistically approximating the graph features. The
latter is often computational expensive and cannot represent
the exact original graph.

B. Mining API Usage Pattern

Instead of selecting code example for an API, a large num-
ber of approaches focus on mining API usage patterns [35],
[15]. Usage patterns are often represented as method call
sequences [13], [47], [49], [53] or even statistical models [32],
[37]. Xie et al. [49] proposed MAPO, which is one of the
first work on mining API patterns from code corpus. MAPO
represents source code as call sequences and clusters them
according to similarity heuristics such as method names. It
finally generates patterns by mining and ranking frequent
sequences in each cluster. UP-Miner [47] is an improvement of
MAPO, which removes the redundancy among patterns by two
rounds of clustering of the method call sequences. Nguyen et
al. [37] proposed SALAD, a statistical model to learning API
usages from bytecode. Similar to CodeKernel, it represents
bytecode as a graph-based model that captures method call
sequences, control and data flows. It learns API usages from
graphs using the hidden markov model (HMM) [41]. Fowkes
and Sutton [13] proposed a probabilistic algorithm that mines
the most informative and parameter-free API call patterns.

While such sequential or statistical patterns have shown
to be useful for API recommendation and code completion,
they are insufficient for developers to understand the detailed
usage of the APIs. It is difficult to reuse an API usage pattern
without code structures. Different from previous techniques,
CodeKernel selects code examples that exhibit code structures,
as it represents source code as graphs instead of call sequences
or statistical models.

C. Graph based Object Usage Pattern

Besides CodeKernel, there have been other work that uses
graph to represent source code and mines API patterns [32],
[36]. The GrouMiner [36] introduced the concept of object
usage graph, and applied it to mine object usage patterns. As
indicated in Section II-D, GrouMiner could produce redundant
patterns since it is based on frequent pattern mining. CodeK-
ernel utilizes the object usage graph proposed by GrouMiner,

it addresses the limitation of GrouMiner by leveraging a
graph kernel based clustering technique, thus producing less
redundant code examples.

Gralan [32] is another approach that uses the object usage
graph to mine object usage patterns. It proposes a graph-based
statistical language model for code suggestion. Different from
Gralan, CodeKernel mines explicit code examples from a code
corpus.

IX. CONCLUSION

We have proposed CodeKernel for the selection of API
usage examples. Instead of approximating source code as
feature vectors or sequences, we represent source code as
object usage graph, and cluster the graphs by embedding
them into a continuous space. Our evaluation results suggest
that CodeKernel provides more accurate and understandable
examples than the state-of-the-art techniques. Feedback from
developers is also very encouraging: 69% of our examples
were preferred to the state-of-the-art technique, 95% devel-
opers considered CodeKernel useful for selecting API usage
examples.The code examples selected by CodeKernel can be
found at our website at: https://guxd.github.io/codekernel.

Graph embedding could also be applied to other tasks
that require feature extraction on source code, such as code
retrieval [16], [48] and code clone detection [19], which will
be our future work. In the future, we will also investigate deep
learning based techniques to further improve the completeness
and readability of the code examples.

X. ACKNOWLEDGMENTS

This work is partially supported by NSFC grant 61828201.

REFERENCES

[1] Github Search. https://github.com/search?type=code.
[2] S. Harris. (2003) Simian - Similarity Analyzer.[Online]. Available:

http://www.harukizaemon.com/simian/.
[3] Spectral Clusterer for WEKA. http://www.luigidragone.com/software/spectral-

clusterer-for-weka/.
[4] Stack Overflow. http://stackoverflow.com/.
[5] M. Allamanis and C. Sutton. Mining idioms from source code. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 472–483. ACM, 2014.

[6] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.
[7] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs.

In Data Mining, Fifth IEEE International Conference on, pages 8–pp.
IEEE, 2005.

[8] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J.
Smola, and H.-P. Kriegel. Protein function prediction via graph kernels.
Bioinformatics, 21(suppl 1):i47–i56, 2005.

[9] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to
improve code completion systems. In Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages
213–222. ACM, 2009.

[10] R. P. Buse and W. Weimer. Synthesizing API usage examples. In
Software Engineering (ICSE), 2012 34th International Conference on,
pages 782–792. IEEE, 2012.

[11] C. Cai, L. Han, Z. Ji, and Y. Chen. Enzyme family classification by sup-
port vector machines. Proteins: Structure, Function, and Bioinformatics,
55(1):66–76, 2004.

[12] D. Cai, X. He, and J. Han. Document clustering using locality preserving
indexing. Knowledge and Data Engineering, IEEE Transactions on,
17(12):1624–1637, 2005.

[13] J. Fowkes and C. Sutton. Parameter-free probabilistic api mining at
github scale. arXiv preprint arXiv:1512.05558, 2015.

[14] T. Gärtner. A survey of kernels for structured data. ACM SIGKDD
Explorations Newsletter, 5(1):49–58, 2003.

[15] M. Ghafari, K. Rubinov, and M. M. Pourhashem K. Mining unit test
cases to synthesize api usage examples. Journal of Software: Evolution
and Process, 29(12):e1841, 2017.

[16] X. Gu, H. Zhang, and S. Kim. Deep code search. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), pages
933–944. IEEE, 2018.

[17] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep API learning. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 631–642. ACM, 2016.

[18] J. Han and C. Moraga. The influence of the sigmoid function parameters
on the speed of backpropagation learning. In From Natural to Artificial
Neural Computation, pages 195–201. Springer, 1995.

[19] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based
code clone detection: incremental, distributed, scalable. In Software
Maintenance (ICSM), 2010 IEEE International Conference on, pages
1–9. IEEE, 2010.

[20] I. Keivanloo, J. Rilling, and Y. Zou. Spotting working code examples.
In Proceedings of the 36th International Conference on Software Engi-
neering, pages 664–675. ACM, 2014.

[21] J. Kim, S. Lee, S.-w. Hwang, and S. Kim. Towards an intelligent
code search engine. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[22] S. Kim, T. Zimmermann, and N. Nagappan. Crash graphs: An aggre-
gated view of multiple crashes to improve crash triage. In Dependable
Systems & Networks (DSN), 2011 IEEE/IFIP 41st International Confer-
ence on, pages 486–493. IEEE, 2011.

[23] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clustering: Identifying
topics in source code. Information and Software Technology, 49(3):230–
243, 2007.

[24] B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph
clustering: a kernel approach. Machine learning, 74(1):1–22, 2009.

[25] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao. Codehow:
Effective code search based on API understanding and extended boolean
model. In Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’15, pages 260–270, Piscat-
away, NJ, USA, 2015. IEEE Press.

[26] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to
information retrieval, volume 1. Cambridge university press Cambridge,
2008.

[27] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In
Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 169–178. ACM, 2000.

[28] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus. How can
I use this method? In Proceedings of the 37th IEEE/ACM International
Conference on Software Engineering (ICSE’15). IEEE, 2015.

[29] A. Narayanan, G. Meng, L. Yang, J. Liu, and L. Chen. Contextual
weisfeiler-lehman graph kernel for malware detection. In 2016 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 4701–4708.
IEEE, 2016.

[30] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig. Api code recommendation
using statistical learning from fine-grained changes. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 511–522. ACM, 2016.

[31] A. T. Nguyen, T. D. Nguyen, H. D. Phan, and T. N. Nguyen. A deep
neural network language model with contexts for source code. In 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 323–334. IEEE, 2018.

[32] A. T. Nguyen and T. N. Nguyen. Graph-based statistical language
model for code. In Proceedings of the 37th IEEE/ACM International
Conference on Software Engineering (ICSE’15). IEEE, 2015.

[33] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V.
Nguyen, J. Al-Kofahi, and T. N. Nguyen. Graph-based pattern-oriented,
context-sensitive source code completion. In Proceedings of the 34th
International Conference on Software Engineering, pages 69–79. IEEE
Press, 2012.

[34] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen. Accurate and efficient structural characteristic feature
extraction for clone detection. In Fundamental Approaches to Software
Engineering, pages 440–455. Springer, 2009.

https://guxd.github.io/codekernel

[35] P. Nguyen, J. Di Rocco, D. Ruscio, L. Ochoa, T. Degueule, and
M. Di Penta. Focus: A recommender system for mining API function
calls and usage patterns. In 41st ACM/IEEE International Conference
on Software Engineering (ICSE), 2019.

[36] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen. Graph-based mining of multiple object usage patterns. In
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 383–392. ACM, 2009.

[37] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen. Learning
API usages from bytecode: A statistical approach. arXiv preprint
arXiv:1507.07306, 2015.

[38] H. Niu, I. Keivanloo, and Y. Zou. Learning to rank code examples for
code search engines. Empirical Software Engineering, 22(1):259–291,
2017.

[39] H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids
clustering. Expert Systems with Applications, 36(2):3336–3341, 2009.

[40] J. C. Platt. Autoalbum: Clustering digital photographs using probabilistic
model merging. In Content-based Access of Image and Video Libraries,
2000. Proceedings. IEEE Workshop on, pages 96–100. IEEE, 2000.

[41] L. R. Rabiner and B.-H. Juang. An introduction to hidden markov
models. ASSP Magazine, IEEE, 3(1):4–16, 1986.

[42] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels
for chemical informatics. Neural Networks, 18(8):1093–1110, 2005.

[43] K. D. Rosa, R. Shah, B. Lin, A. Gershman, and R. Frederking. Topical
clustering of tweets. Proceedings of the ACM SIGIR: SWSM, 2011.

[44] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming, 74(7):470–495, 2009.

[45] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.
Cambridge university press, 2004.

[46] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt. Graph kernels. The Journal of Machine Learning Research,
11:1201–1242, 2010.

[47] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining
succinct and high-coverage API usage patterns from source code.
In Proceedings of the 10th Working Conference on Mining Software
Repositories, pages 319–328. IEEE Press, 2013.

[48] L. Wu, L. Du, B. Liu, G. Xu, Y. Ge, Y. Fu, J. Li, Y. Zhou, and
H. Xiong. Heterogeneous metric learning with content-based regulariza-
tion for software artifact retrieval. In Data Mining (ICDM), 2014 IEEE
International Conference on, pages 610–619. IEEE, 2014.

[49] T. Xie and J. Pei. Mapo: Mining API usages from open source
repositories. In Proceedings of the 2006 international workshop on
Mining software repositories, pages 54–57. ACM, 2006.

[50] D. Zhang, Y. Liu, L. Si, J. Zhang, and R. D. Lawrence. Multiple
instance learning on structured data. In Advances in Neural Information
Processing Systems (NIPS), pages 145–153, 2011.

[51] D.-Q. Zhang, C.-Y. Lin, S.-F. Chang, and J. R. Smith. Semantic video
clustering across sources using bipartite spectral clustering. In Multi-
media and Expo, 2004. ICME’04. 2004 IEEE International Conference
on, volume 1, pages 117–120. IEEE, 2004.

[52] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu. Bing
developer assistant: Improving developer productivity by recommending
sample code. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016,
pages 956–961, New York, NY, USA, 2016. ACM.

[53] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and
recommending API usage patterns. In ECOOP 2009–Object-Oriented
Programming, pages 318–343. Springer, 2009.

