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VarGAN: Adversarial Learning of Variable
Semantic Representations
Yalan Lin, Chengcheng Wan, Shuwen Bai, Xiaodong Gu

Abstract—Variable names are of critical importance in code representation learning. However, due to diverse naming conventions,
variables often receive arbitrary names, leading to long-tail, out-of-vocabulary (OOV), and other well-known problems. While the
Byte-Pair Encoding (BPE) tokenizer has addressed the surface-level recognition of low-frequency tokens, it has not noticed the
inadequate training of low-frequency identifiers by code representation models, resulting in an imbalanced distribution of rare and
common identifiers. Consequently, code representation models struggle to effectively capture the semantics of low-frequency variable
names. In this paper, we propose VarGAN, a novel method for variable name representations. VarGAN strengthens the training of
low-frequency variables through adversarial training. Specifically, we regard the code representation model as a generator responsible
for producing vectors from source code. Additionally, we employ a discriminator that detects whether the code input to the generator
contains low-frequency variables. This adversarial setup regularizes the distribution of rare variables, making them overlap with their
corresponding high-frequency counterparts in the vector space. Experimental results demonstrate that VarGAN empowers CodeBERT
to generate code vectors that exhibit more uniform distribution for both low- and high-frequency identifiers. There is an improvement of
8% in similarity and relatedness scores compared to VarCLR in the IdBench benchmark. VarGAN is also validated in downstream
tasks, where it exhibits enhanced capabilities in capturing token- and code-level semantics.

Index Terms—pre-trained language models, variable name representation, identifier representation, generative adversarial networks

✦

1 INTRODUCTION

CODE representation models, such as CodeBERT [6],
have gained widespread adoption as representations of

source code due to their ability to capture complex semantic
and syntactic features of code. Through pre-training on
large-scale code corpora with unsupervised objectives, they
have made significant improvements in the state-of-the-art
code intelligent tasks and have facilitated the development
of new tools and applications for software analysis.

One of the most crucial parts of code representation is
the ability to capture accurate semantic representations of
identifiers [25], [42]. Identifiers play a critical role in code
semantics. They constitute the main proportion of code
and serve as important semantic cues for code comprehen-
sion [34], [33]. Meaningful and descriptive identifiers can
greatly enhance the readability of code [33], thereby facili-
tating semantic learning by code representation models.

Nonetheless, the representation of source code identifiers
presents noteworthy challenges. Unlike natural languages,
source code variables are named in an arbitrary manner [14].
Programmers adhere to diverse programming conventions
and personal preferences, leading to various formats and
styles of variable names. Consequently, a considerable num-
ber of low-frequency identifiers emerge, referring to identi-
fiers with infrequent occurrences. This phenomenon gives
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Fig. 1: T-SNE visualization of variable name representations
learned by CodeBERT

rise to notable long-tail and out-of-vocabulary (OOV) issues
within the context of source code [46], [14].

There have been numerous attempts to resolve this prob-
lem such as the utilization of unknown tokens (UNK) and
Byte Pair Encoding (BPE) [31]. While these approaches have
successfully tackled the surface-level representation of low-
frequency tokens, they have not noticed another significant
problem: imbalanced training of low- and high-frequency
identifiers by PLMs. Low-frequency identifiers occur rarely
in the code corpora, thus they have fewer opportunities for
training and movement compared to those high-frequency
identifiers. Take the variable name sum12 as an example.
Though both its subtokens sum and 12 appear frequently
in the corpora, their combination has a relatively rare oc-
currence, making it challenging for the code representation
model to accurately capture its semantics. Consequently, the
learned vector space exhibits bias towards more common
identifiers, leading to an imbalanced distribution of vectors



for low- and high-frequency identifiers. The distances in
the vector space cannot accurately reflect the correlation
between variables. Figure 1 visualizes the representations
of Java identifiers obtained by CodeBERT. The data points
in orange correspond to high-frequency variables, whereas
the points in green represent low-frequency variables. It can
be seen that there is an evident discrepancy in the distri-
bution between low- and high-frequency variable names.
The overall distribution is cone-shaped, with low-frequency
identifiers more concentrated at the head of the cone, while
high-frequency identifiers are dispersed along its tail. Even
if two low- and high-frequency identifiers are semantically
similar, they may exhibit significant distance in the vector
space, such as sum12 and amount in Figure 1. A more
profound study of this phenomenon can be found in our
experiments of RQ1 (Section 4.1).

On the other hand, low-frequency variable names play
a crucial role in code comprehension, given that code rep-
resentation models heavily depend on the semantic cues
encoded in identifiers [27]. Removal or insufficient training
of low-frequency variables could impact the mo coarse-
grained requirements and lack relevant resources.del’s per-
formance significantly [43]. For instance, if sum12 is used
as a function name and is removed directly, comprehending
this function could be significantly challenging due to the
absence of essential function name information. Therefore, it
is essential to enhance the model’s training process to better
comprehend and handle low-frequency variable names.

To tackle this problem, we propose VarGAN, an adver-
sarial method that focuses on strengthening the training
of low-frequency identifiers. The primary objective of Var-
GAN is to align the distribution of low-frequency tokens to
their corresponding high-frequency counterparts within the
representation space. This alignment is achieved through
a Generative Adversarial Network (GAN) framework [9],
wherein we regard the code representation model as the
generator responsible for producing vectors from source
code. Additionally, we employ a classifier referred to as the
discriminator. The discriminator’s role is to assess the en-
coding generated by the generator and determine whether
the code contains low-frequency words. Conversely, the
generator endeavors to deceive the discriminator, effectively
making it unable to differentiate whether the input code
comprises low-frequency words or not. This adversarial
setup incentivizes the generator to produce more precise
representations of low-frequency identifiers. In this way, the
generated low- and high-frequency variable vector spaces
can overlap as much as possible, thereby alleviating the
above-mentioned problem highlighted in Figure 1.

To verify the effectiveness of our proposed method,
we conducted experiments from three aspects: Firstly, we
verify whether VarGAN can improve the representations of
low-frequency identifiers in the vector space. Specifically,
we examined the distribution of vectors before and after
applying our method. We observed that our method leads
to more uniform distribution of vectors for low-frequency
identifiers. Subsequently, we evaluate the model’s capability
in identifier understanding using the identifier similarity
scoring task. Evaluation results show that our proposed
method can help the model better capture the semantic
meaning of identifiers. Finally, we apply VarGAN to several

downstream tasks, including similar identifier search, code
summarization, and code clone detection. The results prove
that adversarial training of low-frequency identifiers can
boost the performance of CodeBERT, which affirms the
practicality of our proposed method.

To summarize, our main contributions are as follows:
• We study the issue of imbalanced training of low- and

high-frequency identifiers within code representation
models.

• We propose a novel adversarial method to mitigate the
gap between low- and high-frequency variable names in
the vector space learned by code representation models.

• We conduct extensive experiments to evaluate the effec-
tiveness of our approach. The results show that VarGAN
achieves a new state-of-the-art performance on the identi-
fier similarity scoring benchmark and also improves code
representation models in other downstream tasks.

2 BACKGROUND

2.1 Variable Name Representations
Variable name representation is a technology to encode vari-
able identifiers into continuous vectors, such that identifiers
have close relationships also share similar vectors [1]. These
encoded vectors, or named embeddings, can be used for
identifier correction and renaming to facilitate code analysis
and manipulation.

A traditional way for variable representation is the uti-
lization of Word2Vec [22] which assigns embeddings to each
subtoken in the code and then trains a neural network
to predict the target identifier given context embeddings.
Word2Vec has the bag-of-words assumption and thus fails
to generate context-aware vector representations for indi-
vidual identifiers [37].

Recently, researchers have started utilizing pre-trained
language models to obtain vector representations for source
code tokens, including identifiers. Pre-trained models such
as CodeBERT are built upon the Transformer architecture,
utilizing a self-attention mechanism to allow a token to
attend to other tokens in the same sequence [40]. Through
training on a large code corpus, these pre-trained models
have a better understanding of the identifier semantics in
the broader context of the code.

However, directly utilizing pre-trained models to gen-
erate identifier representations often produces suboptimal
outcomes. This is mainly caused by the existence of seman-
tically similar yet distant identifiers. To tackle this problem,
Chen et al. propose VarCLR [3], where the contrastive loss
function is augmented to the identifier embeddings. This
augmentation encourages the pre-trained model to learn
representations that exhibit proximity for semantically sim-
ilar variables and distance for dissimilar variables.

2.2 Generative Adversarial Networks
Generative Adversarial Network (GAN) is a machine learn-
ing technique aiming at generating high-quality data sam-
ples that resemble the training corpus [9]. A GAN consists
of two neural networks competing with each other: a gen-
erator G and a discriminator D. G aims to generate data
samples (such as images and texts) from random noise z,

2



namely x̂ ∼ G(z), while D is responsible for distinguishing
between real and model generated samples. Given an input
sample x, it predicts preal = D(x), the probability that the
input is real.

During the training progresses, G and D alternatively
improve their capabilities through optimizing a min-max
objective:

min
G

max
D

V (D,G) = Ex∼D[logD(x)]+Ez∼P (z)[log(1−D(G(z)))]

(1)
Upon reaching equilibrium, G will produce increasingly
realistic samples, and D will encounter increasing difficulty
in distinguishing between real and generated samples. The
ultimate objective of GAN is to train a generator network G
whose output samples are indistinguishable from real ones.

2.3 Downstream Tasks

Programming-related downstream tasks serve as a compre-
hensive means to evaluate the capabilities of code represen-
tation models. As our paper primarily focuses on encoder-
only models, we study downstream tasks that are related to
code comprehension, including:

Code Summary. A task to generate a natural language
summary for a given code snippet [35]. A model generat-
ing high-quality code summaries means that it has a high
capability of code comprehension.

Clone Detection. Given a code snippet and a set of
candidate snippets as input, this task aims at identifying
the top-K code snippets that are semantically similar to the
input code snippet [26].

3 METHOD

In this section, we will introduce VarGAN, a novel adver-
sarial method to mitigate the gap between low- and high-
frequency identifiers.

3.1 Overview

We regard a PLM-based code encoder (e.g., CodeBERT)
as a generator that produces accurate semantic vectors
for a given code snippet. Our objective is to align the
vectors of low-frequency identifiers to the corresponding
high-frequency counterparts in the vector space. To this
end, we accompany the generator with a discriminator that
detects whether the input code of the generator contains
low-frequency identifiers. The generator’s objective is to
produce vectors that the discriminator cannot distinguish,
thereby overlapping the generated vectors of both low- and
high-frequency identifiers as much as possible in the vector
space.

Our method comprises three components, as illustrated
in Figure 2. Firstly, we partition the training code corpus into
low- and high-frequency subsets. Secondly, we harness an
adversarial training process to regularize the vector space of
low-frequency identifiers to its high-frequency counterparts.
Lastly, we integrate our method with other pre-training
tasks of the PLM encoder to ensure the vectors preserve
the semantics in the code context. We will present each of
these components in detail in the following sections.

3.2 Partitioning Code with Identifier Frequency

Our method involves a classifier that discriminates whether
a given code snippet contains low-frequency variable
names. To train this classifier, we need both positive (i.e.,
code with low-frequency identifiers) and negative (i.e., code
without low-frequency identifiers) samples. We accomplish
this by partitioning the original pre-training corpus (i.e.,
CodeSearchNet) for the PLM into two subsets. Let C =
{x1,...,xN} denote the code corpus for pre-training the
PLM. For each code snippet xi ∈ C, we assign a label
yi ∈ {0, 1}. yi = 1 if xi contains low-frequency iden-
tifiers and 0 otherwise. This yields a labeled dataset of
C̃ = {(x1, y1), ..., (xN , yN )}.

This raises the question of how to define low-frequency
identifiers. In our approach, an identifier is low-frequency
only when the occurrence of it or any of its subtokens falls
below threshold α. α is the median value of the frequency
of subtokens of all identifiers inside the code corpus. There-
fore, it creates a rough balance between the positive and
negative samples for training the discriminator. We count
the frequency of all identifiers from the CodeSearchNet code
corpus [13]. Observed that camel case and underscore are
commonly used for combining variable names [1], we split
identifiers using the safe simple split method from the Spiral
package1 and count the subtokens instead.

3.3 Code Representation Learning (Generator)

We adopt the popular PLM-based code representation
model, CodeBERT, as a generator that produces feature vec-
tors for a code snippet. Given a code snippet x = w1, ..., wn

with n subwords, the PLM generator produces a sequence
of hidden vectors

h1, ...,hn = CodeBERT(w1, ..., wn)

where hi ∈ Rd denotes the encoding vector for token i.
We then perform average pooling on the vector sequence

to obtain the vector representation of the entire code snippet:

c =
1

n

n∑
i=1

hi. (2)

Therefore vector representation of the code snippet c has
the same dimension as each subword vector hi.

3.4 Rare Identifier Detection (Discriminator)

With the generator, the infrequent identifiers in x will be
reflected in the encoded vector c. Therefore, we create an ad-
ditional discriminator to regularize code vectors produced
by CodeBERT. The discriminator is a fully connected neural
network that performs binary classification on the code
vectors produced by the generator. Specifically, it takes code
vector c as input and outputs a confidence score between 0
and 1 indicating how likely the input code x to the generator
contains low-frequency identifiers.

D(x) = sigmoid(Wc) (3)

where W denotes the training parameters.

1. https://github.com/casics/spiral
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Fig. 2: The overall framework of VarGAN

3.5 Adversarial Training
Throughout the training process, samples were drawn from
the training corpus and subsequently used to compute the
loss functions by feeding them through the generator and
discriminator. The training objective of the discriminator
is to accurately identify whether the code contains low-
frequency identifiers. Therefore, it aims to minimize the
binary cross-entropy loss:

LD = − 1

N

N∑
i=1

(yi logD(xi) + (1− yi) log(1−D(xi))) (4)

where N represents the number of training samples.
The objective of the generator G is to deceive the dis-

criminator D, namely, maximize the error rate of the dis-
criminator D. Therefore, the loss function of the generator
is the negative log-likelihood of the discriminator’s misclas-
sification probability:

LG = − 1

N

N∑
i=1

((1− yi) logD(xi) + yi log(1−D(xi))) (5)

Overall, the adversarial training aims to optimize the
min-max objective:

min
G

max
D

V (D,G) = Ex∼Ch
[logD(x)]+Ex∼Cl

[log(1−D(x))]

(6)
where Ch and Cl denote code corpora that contain high- and
low-frequency identifiers, respectively.

To accomplish this min-max game, in the training pro-
cess, we alternatively update gradients for the discriminator
and generator toward their objectives. It is also imperative
to note that throughout the training process, G must not be
excessively trained without updating D, otherwise the gen-
erator may ”take shortcuts” by generating certain singular
values that can confuse the discriminator, but this comes at
the expense of losing the ability to generate diverse samples.
To mitigate this challenge, we introduced a discriminator
update step (d iter) in the iteration process. Specifically, the
discriminator underwent multiple iterations prior to a single
iteration of the generator, thus facilitating the acquisition
of more comprehensive learning by the discriminator. The
whole process is outlined in Algorithm 1.

Through adversarial training, we anticipate the distribu-
tion of low- and high-frequency identifiers to be more uni-
form so that the discriminator cannot detect low-frequency

identifiers from the representation vectors. Figure 3 illus-
trates the idea of vector space alignment by adversarial
training, where G0 and D0 denote the initial generator and
discriminator, while GK and DK represent the final model
attained upon convergence of the training process. Initially,
there exists a notable discrepancy between the distributions
of low- and high-frequency identifiers (as can be seen
from the upper part of the figure). However, as adversarial
training proceeds, there is a consequential shift observed in
the identifier vectors. Gradually, the vector distributions of
low- and high-frequency identifiers begin to overlap with
each other, as depicted in the bottom part of the figure,
thereby alleviating the situation where semantically similar
identifiers are far apart in the vector space due to frequency
differences.

3.6 Preserving the Original Semantics

As adversarial training only encourages PLMs to generate
variable vectors that cannot be distinguished by the discrim-
inator, the learned vectors could deviate from the original
semantics during pre-training. To preserve the semantics of
variables in the generated vectors, we integrate the adver-
sarial training process with the original MLM objective of
CodeBERT. Since we only concern identifiers, we chose the
Masked Identifier Prediction (MIP) instead, which is widely
used in code PLMs [28], [42]. Specifically, we randomly
mask 50% of the identifiers from the input code x and ask
the pre-trained CodeBERT model to predict the subwords.
Let x̂ denote the masked code snippet of x. pθ(.) denotes
a multi-layer perceptron that maps the hidden vector of
CodeBERT to the vocabulary space. The MIP task aims to
minimize the cross-entropy loss:

Lsc(θ) =
∑
i∈n

− log pθ(xi|CodeBERT(x̂)) (7)

We integrate the MIP loss with the adversarial training
loss of the generator and jointly perform backpropagation.

3.7 Training

We treat VarGAN as a pre-training method of a PLM. We
selected CodeBERT as our backbone PLM and continually
pre-train it using VarGAN.
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Algorithm 1: Adversarial Training of VarGAN

Input: C̃={(x1,y1),...,(xN ,yN )}: A code corpus with
labels of low-frequency identifiers;

G: A PLM for code representation (e.g.,
CodeBERT);

D: A discriminator to detect low-frequency
identifier in G;

d iter: discriminator update steps;
Output: G: The optimized generator.

1 while not converge do
2 for i ∈ steps do
3 ▷ traverse all batches in data loader
4 Select (x, y) from C̃;
5 c = G(x); ▷ generate vectors for code
6 p(x) = D(c); ▷ detect low-frequency identifiers
7 Compute Ld using Equation 4;
8 Compute Lg using Equation 5;
9 x̃ = mask identifier(x);

10 Compute Lsc using Equation 7 ;
11 Update D with Ld;
12 if i % d iter == 0: then
13 Update G with Lsc + Lg ;
14 end
15 end
16 end

Dataset: We train CodeBERT using the Java subset of
CodeSearchNet [13], which consists of 454,451 code snip-
pets. We employ tree sitter 2 to parse the code snippets and
extract the identifiers. We set the threshold of low-frequency
identifiers to 301 which yields a rough balance between
positive and negative training samples.

Setting: The discriminator used in our approach is a
multi-layer perceptron (MLP) with two layers, with the
input dimension being the same as the output dimension
of the PLM. Since the discriminator is randomly initialized,
the generator can easily produce vectors to deceive the
discriminator at the early stage. To allow the generator to
receive sufficient training, we set a small learning rate of 5e-
7 for the generator and a larger learning rate of 5e-5 for the
discriminator. The hyperparameter diter in Algorithm 1 is

2. https://github.com/tree-sitter/tree-sitter

set to 2. To ensure consistency with downstream tasks, we
extract the final-layer hidden states from CodeBERT as the
outcome of the generator and utilize them for adversarial
training. The batch size is set to 32, and the training is
conducted for ten epochs.

4 EVALUATION

In this section, we conduct experiments to validate the
effectiveness of the proposed approach. Overall, we address
the following research questions:
• RQ1: Does VarGAN lead to a more uniform distribution

of low- and high-frequency identifier vectors?
This RQ aims to examine the impact of VarGAN on the
regularization of the vector space learned by CodeBERT.
Answering this RQ enables us to understand the funda-
mental reasons for the effectiveness of VarGAN.

• RQ2: How effective is VarGAN in variable semantic
representation?
As the primary goal of this paper, we showcase the
effectiveness of our approach in capturing the semantics
of variable names. Following a recent variable representa-
tion study VarCLR [3], we gauge the model’s understand-
ing of variable semantics by assessing its performance
in variable-relevant downstream tasks such as variable
similarity scoring and variable search.

• RQ3: Does VarGAN enhance code representation mod-
els on downstream tasks?
In addition to assessing the efficacy of capturing variable
semantics, we are interested in evaluating how well
VarGAN captures code-level semantics. To investigate
this aspect, we employ our proposed approach as a pre-
training task for code representation models and assess
their performance on downstream tasks.

4.1 The Spatial Distribution of Identifier Vectors (RQ1)
In this section, we study the effect of VarGAN in regu-
larizing the vector space learned by CodeBERT. We start
with a qualitative analysis demonstrating the change of
distributions in the vector space before and after incorpo-
rating VarGAN, followed by a quantitative measuring of the
variable distances through the adversarial learning process.

4.1.1 Qualitative Analysis
To investigate the impact of our method on the distribu-
tion of variable vectors, we visualized the vector space of
variables learned by CodeBERT before and after adding
VarGAN during pre-training. We pre-train CodeBERT using
the methodology in Section 3.7. Then, we select the 5000
most frequent and rare identifiers respectively from the vo-
cabulary. We feed each identifier into CodeBERT and obtain
its vector using the hidden state from the last layer. We use
the T-SNE [38] to reduce the dimensionality of the vectors
and plot them in the 2D space. The results are rendered in
Figure 4.

In the absence of applying VarGAN (a), the identifier
vectors produced by CodeBERT exhibit a separate distribu-
tion. While the vectors of high-frequency identifiers span
a wider stretched space, low-frequency ones were concen-
trated near the origin. This is caused by the different fre-
quencies between identifiers in the corpus. Word vectors are
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Fig. 4: T-SNE visualization of variable embeddings learned by CodeBERT and VarGAN

typically initialized around the origin with small variances,
but high-frequency identifiers have more opportunity for
training and moving away from the origin compared to
those of low-frequency ones [8].

Such a separate distribution further causes the semantic
discrepancy problem, that is, the distance between vectors
does not reflect the variable similarity. For example, both
timer and clock mean a utility about time, though de-
velopers prefer using timer (with a high frequency) than
clock (with a low frequency). We observe that their vectors

are far apart in the space learned by CodeBERT. Similarly,
while errors and mistakes possess comparable semantic
meanings, their significant disparity in word frequency re-
sults in a substantial distance between the two variables.

Upon applying VarGAN (b), we observed a more uni-
form distribution of identifier vectors. The separation be-
tween low- and high-frequency identifiers decreased, indi-
cating that the identifier vectors were more uniformly dis-
tributed. We attribute this improvement to our adversarial
training approach, which prompts CodeBERT to generate
vectors for low- and high-frequency identifiers that are chal-
lenging to distinguish for the discriminator. Furthermore,
we notice a significant reduction in the distance between
previously semantically related variables, such as timer and
clock, or errors and mistakes. This decrease in distance

suggests that the model has developed a more refined
understanding of variable semantics by incorporating our
method.

The analysis above highlights that the effectiveness of
VarGAN primarily arises from its adversarial training ap-
proach, resulting in a more balanced distribution of vectors.
By countering the discriminator’s judgments, the model
naturally avoids segregating low- and high-frequency vari-
ables into separate clusters. Consequently, the distances in
the vector space can more accurately reflect the correlation
between variables, irrespective of their frequency. The im-
proved performance of the model in downstream tasks is
largely attributed to this characteristic.

4.1.2 Quantitative Analysis

To verify the qualitative findings, we conducted a quanti-
tative analysis by calculating the average pairwise cosine
similarity within each group of variables and evaluating the
cross-group similarity. This approach enables us to quantita-

TABLE 1: Average pairwise cosine similarities for different
groups of variables

Model Within Group Cross GroupHigh-freq. Low-freq.
CodeBERT 0.3998 0.5304 0.4357
CodeBERT + Ours 0.5845 (↑) 0.5842 (↑) 0.5843 (↑)

tively assess the distributions of the two groups of variables.
The results are presented in Table 1.

In the original CodeBERT, we observed that the high-
frequency group exhibits smaller pairwise similarities com-
pared to the low-frequency group. This suggests that high-
frequency variables are more spread out in the vector
space, while low-frequency variables are more compressed.
Additionally, the cross-group similarity is relatively low,
indicating a clear separation between the two groups of
variables. These observations underscore the presence of
the previously noted imbalanced training issue, which can
have adverse effects on downstream tasks such as identifier
similarity search.

Upon adversarial training, we observed a significant
increase in pairwise cosine similarities for both groups.
Additionally, the average similarities for the two groups be-
come comparable, indicating a more balanced distribution
of variables. Moreover, the cross-group similarity shows a
clear increase, implying that our approach effectively aligns
low-frequency identifiers with their high-frequency counter-
parts. As a result, a more uniform distribution is achieved
across both groups of variables, indicating its effectiveness
in alleviating imbalanced identifier training.

Answer to RQ1: VarGAN empowers CodeBERT to
stretch the distribution of identifier vectors and produce
more uniform distributions of low- and high-frequency
identifier vectors, indicating its effectiveness in alleviat-
ing imbalanced identifier training.

4.2 Effectiveness in Variable Semantic Representation
(RQ2)

We subsequently showcase the effectiveness of our ap-
proach in capturing the semantics of variable names. Fol-
lowing a recent variable representation study VarCLR [3],
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we conduct our evaluation through two tasks, variable simi-
larity scoring and variable similarity search.

It is important to note that VarGAN differs from VarCLR
in terms of task specification. While VarCLR represents only
single variables, VarGAN aims to encode the entire code.
To accommodate this task and ensure a fair comparison,
we feed the generator with only individual variables. The
objective of the discriminator is modified to determine
whether the input variable has a low frequency in the
training set. We also exclude the MIP task in the adversarial
training process. We refer to the variant of our method as
VarGAN-S. VarCLR-S is not comparable to VarCLR directly.
Consequently, we integrate our approach into VarCLR’s
framework and evaluate its performance in comparison to
VarCLR.

4.2.1 Variable similarity scoring
The goal of this task is to verify whether the (cosine)
similarity scores between variables computed using model-
generated vectors are correlated with the human-assigned
ground-truth scores. We measure the correlation between
the two parallel scores using Spearman’s rank correlation
coefficient [30]. The coefficient falls in the range [-1, 1]. A
higher coefficient indicates more accurate semantics cap-
tured by the model.

Dataset: Following VarCLR, we use the GitHubRenames
dataset [3] for training the variable representation model
and the IdBench scoring benchmark [41] for testing.

GitHubRenames comprises 66,855 pairs of similar vari-
ables, each containing a variable name before and after
a renaming commit. We build a vocabulary based on the
variable frequencies in this dataset and label whether each
variable has a low frequency. We set the threshold α to 63 in
this dataset.

IdBench is a benchmark that is widely used for evalu-
ating variable semantic representations [3]. The benchmark
consists of 176 pairs of similar variables that were manually
labeled by 500 software developers. Each pair is labeled
with a similarity and relatedness score, where similarity
refers to the degree of shared meaning, allowing for substi-
tution without altering the overall meaning; and relatedness
captures the level of association, encompassing diverse po-
tential relationships. The benchmark is grouped into three
subsets (i.e., small, medium, and large) with varying data
cleaning thresholds.

Settings: To demonstrate the versatility of our approach,
we applied VarGAN-S to three distinct pre-trained models:
RoBERTa [19], trained on natural language; CodeBERT [6],
trained on code corpora; and GraphCodeBERT [10], inte-
grated code structure information. We apply VarGAN-S to
each PLM and compare the performance to the original
one. We also build VarCLR based on the PLMs (denoted
as VarCLR-PLM) and compare the performance with and
without VarGAN-S.

We adhered to the training parameters as stipulated in
the original paper, with the sole exception of configuring a
learning rate of 2e-5 for the newly introduced discriminator.

Results: Table 2 summarizes the experimental results.
Overall, VarGAN-S exhibits a clear performance enhance-
ment in each comparison pair (bolded in Table 2). The pre-
trained model achieves low correlations in terms of similar-

TABLE 2: Spearman’s rank correlation with IdBench in
terms of similarity (a) and relatedness (b)

(a) Similarity scores

Model Small Medium Large
RoBERTa 0.18 0.16 0.21
+VarGAN-S 0.23 0.22 0.25

CodeBERT 0.13 0.13 0.12
+VarGAN-S 0.31 0.24 0.26

GraphCodeBERT 0.41 0.42 0.40
+VarGAN-S 0.43 0.43 0.42

VarCLR-RoBERTa 0.45 0.41 0.42
+VarGAN-S 0.48 0.43 0.43

VarCLR-CodeBERT 0.53 0.53 0.51
+VarGAN-S 0.57 0.55 0.55

VarCLR-GraphCodeBERT 0.54 0.54 0.53
+VarGAN-S 0.57 0.56 0.55

(b) Relatedness scores

Model Small Medium Large
RoBERTa 0.36 0.36 0.38
+VarGAN-S 0.37 0.40 0.40

CodeBERT 0.25 0.28 0.29
+VarGAN-S 0.40 0.45 0.49

GraphCodeBERT 0.68 0.67 0.67
+VarGAN-S 0.69 0.70 0.70

VarCLR-RoBERTa 0.69 0.70 0.70
+VarGAN-S 0.74 0.74 0.75

VarCLR-CodeBERT 0.79 0.79 0.80
+VarGAN-S 0.81 0.81 0.82

VarCLR-GraphCodeBERT 0.84 0.82 0.83
+VarGAN-S 0.86 0.83 0.83

ity (0.12-0.42) and relatedness (0.25-0.68) across all test sets.
After applying VarGAN-S, the similarity score increases
to 0.22-0.43 and relatedness to 0.37-0.70. VarGAN-S also
demonstrates better performance when applied to VarCLR.
The similarity score increases to 0.43-0.57 and relatedness to
0.74-0.83. VarGAN-S further enhances the improvement by
around 8%.

We notice that a single VarGAN-S exhibits lower perfor-
mance compared to VarCLR when applied to a PLM. This
discrepancy arises from VarCLR being trained on parallel
variables that share semantic similarity, a condition not
required by VarGAN-S. Furthermore, VarCLR takes only
variables as input, whereas the original VarGAN is designed
to encode the entire code. To accommodate this task dif-
ference, VarGAN-S omits the semantic preservation step
from VarGAN, leading to a decrease in performance. This
observation also indicates that simply adversarial training
without semantic preservation is insufficient to regularize
the variable representations.

To gain further insights into the results, we conducted
an analysis of the effects of using different proportions of
training data on the model’s performance. As depicted in
Figure 5, our method demonstrates a more significant ad-
vantage in scenarios with limited training data. Specifically,
when only 10% of the training data is available, VarGAN-
S enhances the baseline models by approximately 30%.
The rationale behind this observation is straightforward: in
low-resource settings, the challenge of insufficient training
for low-frequency variables becomes more prominent. With
a larger amount of training data, low-frequency variables
have more opportunities for training and exploitation. Con-
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TABLE 3: Spearman’s rank correlation (similarity) with Id-
Bench for each layer of CodeBERT. 0 stands for the first
(embedding) layer while 12 represents the last layer.

Small Medium Large
Layer Orig. VarGAN-S Orig. VarGAN-S Orig. VarGAN-S

12 0.13 0.31 0.13 0.24 0.12 0.26
11 0.14 0.32 0.14 0.25 0.12 0.26
10 0.15 0.29 0.16 0.23 0.14 0.23
9 0.20 0.23 0.18 0.20 0.17 0.19
8 0.25 0.21 0.24 0.19 0.22 0.17
7 0.27 0.26 0.27 0.27 0.25 0.23
6 0.27 0.25 0.27 0.26 0.24 0.22
5 0.27 0.24 0.27 0.25 0.24 0.21
4 0.28 0.26 0.27 0.26 0.25 0.23
3 0.26 0.25 0.28 0.27 0.26 0.25
2 0.28 0.26 0.30 0.29 0.27 0.26
1 0.28 0.28 0.30 0.30 0.27 0.27
0 0.24 0.24 0.26 0.26 0.21 0.21

sequently, the problem of disparate distribution is allevi-
ated. These results further validate our initial motivation
regarding the inadequacy of training for low-frequency
variables.
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Fig. 5: Spearman’s rank correlation (similarity) under differ-
ent training data percent

Case Study. We take CodeBERT as an example to illus-
trate how VarGAN-S enables CodeBERT to achieve almost
twice the higher similarity/relatedness score. Table 3 shows
Spearman’s correlation with IdBench in terms of similarity
using the vectors from each layer of CodeBERT. As the
results indicate, the improvement of VarGAN-S becomes
more pronounced using later layers, indicating that the
vectors obtained from the earlier layers are more uniform.
This could be caused by two impacts: 1) the last layer is used
for training, and thus the optimal vector naturally appears
in this layer; 2) the first few layers have a similar distribution
of low- and high-frequency variables, while they are closer
to the embedding layer and thus are easier to find low-
frequency subwords in encoding vectors.

4.2.2 Variable Similarity Search
Variable similarity search is a task to find the most similarity
variables from a candidate pool [3]. Given a pair of vari-
ables recognized as similar, along with a substantial set of
candidate variables, the objective is to compute the cosine
similarity between the input variable and all the variables
within the candidate set. This similarity calculation enables
the selection of the top-k variables that possess the greatest
resemblance. Subsequently, a verification process is con-
ducted to ascertain the presence of the previously identified
similar variables within the selected subset of k variables [3].

Dataset: We adhere to the settings established in Var-
CLR. The GitHubRenames dataset was used to train the

model. Variable pairs within the IdBench-large dataset pos-
sessing a similarity score greater than 0.4 are selected as
similar pairs to test the model. Moreover, the competing
variable data aligns with VarCLR, encompassing a total of
209,388 candidate variables.
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Fig. 6: Results of variable similarity search under different
settings

Results: The experimental results are depicted in Ta-
ble 4. We measure the performance using recall and com-
pare VarGAN-S with VarCLR, the previous state-of-the-art
method in this task. The findings demonstrate a substantial
superiority of our method over VarCLR, particularly evident
when considering a small value of k. Notably, our method
attains a new record recall of 17%, almost doubling the score
achieved by VarCLR (8%).

Robustness Analysis: To demonstrate the robustness
of our approach, we conducted additional experiments us-
ing different hyper-parameters in conjunction with external
methods. These experiments involved variations in batch
size, as well as utilizing a shared learning rate for both
the generator and discriminator. It can be observed that
our approach consistently achieves superior performance
compared to the baseline method VarCLR.

Case Study. To further analyze the advantages of
VarGAN-S in variable semantic representation, we present
the top-5 most similar words of input variables found
by VarCLR and the inclusion of VarGAN-S in Table 5.
Notably, the integration of VarGAN-S facilitates a better
acquisition of semantic information and enables the explo-
ration of a more diverse vocabulary, in contrast to VarCLR,
which primarily relies on visual similarities between word
morphology. For instance, in many contexts, “cols” serves
as a shortened form of “columns” and carries the same
semantic meaning. While VarGAN-S successfully captures
such an association, VarCLR only finds variables containing
the exact word “column”. Furthermore, VarGAN-S captures
the association between “user” and “person”, yet VarCLR
only finds words containing “user”. This highlights the ad-
vantage of VarGAN-S in uncovering meaningful linguistic
relationships beyond surface-level similarities.

Nevertheless, there are still some cases where our ap-
proach exhibits suboptimal outcomes. It may associate vari-
ables with others that are contextually relevant but lack
the exact semantic equivalence. As an example, VarGAN-
S may link “inputs” to “inputNodes” and link “equals” to
“equalsDate”, highlighting a potential limitation in captur-
ing precise semantic meanings in certain scenarios. Efforts to
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TABLE 4: Comparing VarCLR and VarGAN-S on the variable similarity search task

Model Recall@1 Recall@5 Recall@10 Recall@25 Recall@50 Recall@100 Recall@250 Recall@500 Recall@1000
VarCLR 8.0 25.0 33.0 37.0 42.0 45.0 60.0 73.0 77.0
+VarGAN-S 17.0 32.0 40.0 45.0 53.0 62.0 69.0 78.0 81.0

TABLE 5: Top-5 similar variables found by VarCLR and VarGAN-S in the variable similarity search task

Input Reference Method Top-5 Similar Variables

user person
VarCLR $user, tuser, userid, userId, useraccount
+VarGAN-S author, userid, person, userId, username

columns cols
VarCLR sColumns, columnsArray, $columns, columnFields, rowColumns
+VarGAN-S columnFields, propertys, cols, columnsItems, relationFields

callback cb
VarCLR callbackfn, callbackFn, callbackAsync, fCallback, callbackify
+VarGAN-S cb, callbackfn, handler, callbackFn, callbackname

username userid
VarCLR userUsername, ssoUsername, $username, usernameInstance, accountUsername
+VarGAN-S userName, userid, loginname, $username, user

items files
VarCLR sitems, itemsList, eItems, mItems, itemsArray
+VarGAN-S files, values, lines, results, models

utils util
VarCLR utilities, tilsUtils, esutils, libutils, helperUtils
+VarGAN-S util, tools, math, forge, runner

inputs resources
VarCLR input, $inputs, inputSources, inputsEl, sInput
+VarGAN-S $inputs, inputNodes, inputList, fieldInputs, inputsEl

equals same
VarCLR equalsFn, equalsF, notEquals, $equals, isEq
+VarGAN-S equalsFn, equalsF, isEquals, $equals, equalsDate

address and further refine these occurrences could enhance
the overall accuracy and reliability of our method.

Answer to RQ2: Adversarial training enables PLMs
to better capture variable similarities and relatedness,
demonstrating its ability in learning variable semantic
representations.

4.3 Effectiveness in Downstream Tasks (RQ3)

In this section, we present the effectiveness of our pro-
posed method, VarGAN, by utilizing it as a pre-training
task and subsequently fine-tuning it on downstream tasks
as introduced in Section 2.3. Specifically, we evaluate the
performance of VarGAN on two downstream tasks: code
summarization and code clone detection. These tasks are
chosen to showcase the effectiveness of VarGAN in captur-
ing code-level semantics.

4.3.1 Code Summary

Setup: We evaluate the performance of VarGAN in Java
code summarization. As CodeBERT is an encoder-only
model, we append it with an additional Transformer de-
coder to accommodate the sequence-to-sequence task. Then,
we fine-tune the models pre-trained with VarGAN on a
parallel PL-NL dataset. Following CodeBERT, we use the
data and scripts provided in CodeXGLUE [21]. We set the
learning rate to 6e-5 and the batch size to 32. We measure
the performance using the BLEU score [24] and compare the
result with that of the vanilla CodeBERT. We do not include
VarCLR as a baseline since it is designed to encode single
variables while our approach aims to encode the entire code.
Besides CodeBERT, we also apply our approach to Graph-
CodeBERT [10], a follow-up code representation model that
also has an encoder-only architecture. We did not consider
other generative PLMs (e.g., CodeT5) which are beyond
the primary scope of this paper. Besides, generative PLMs

typically involve seq2seq pretraining objectives, which are
incompatible with VarGAN at present.

Results: The results are presented in Table 6. As ob-
served, our proposed method increases the BLEU scores by
3% and 2% compared to CodeBERT and GraphCodeBERT,
respectively. The results indicate that regularizing low-
frequency identifiers with adversarial training enhances
code representation models in code comprehension.

We also evaluate the contribution of each training objec-
tive by ablating either MIP or GAN from VarGAN. As the
results show, either GAN or MIP is useful for code semantic
learning. Moreover, the inclusion of MIP further enhances
the performance.

4.3.2 Clone Detection
Setup: We experiment with the POJ-104 [23] benchmark,
which contains 104 programming problems from an open
judge (OJ) system 3. Each problem has 500 corresponding
c/c++ solutions that are considered semantically similar
code snippets. We evaluate the performance using the
MAP@R metric, which is defined as the mean of average
precision scores. Each average precision score is evaluated
for retrieving R most similar samples given a query. We set
the maximum value of R to 499 since each code snippet
has at most 499 similar snippets. We set the learning rate
to 2.4e-5 and the batch size to 16. We apply our method to
CodeBERT and GraphCodeBERT and compare the results
with the vanilla models. We do not include VarCLR as a
baseline since it is designed to encode single variables while
our approach aims to encode the entire code. We reproduce
the results of baseline models using the default settings and
scripts provided on the CodeXGLUE website4.

Results: The experimental results are presented in Ta-
ble 6. It can be observed that after applying our method to
CodeBERT and GraphCodeBERT, their MAP scores in the

3. http://programming.grids.cn
4. https://github.com/microsoft/CodeXGLUE/tree/main/Code-

Code/Clone-detection-POJ-104
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clone detection task have improved by 0.8 and 3.5, respec-
tively. These results further demonstrate the effectiveness of
VarGAN in capturing code semantics.

We also conducted an ablation experiment on CodeBERT
and GraphCodeBERT with solely MIP and GAN training.
We observe that utilizing MIP only leads to a decrease
in performance whereas sole reliance on GAN training
continues to significantly enhance overall performance. This
observation underscores the efficacy of adversarial training
when employed as an independent task, while MIP may
benefit more from being combined with other tasks.

TABLE 6: Performance of code summarization (Java) and
clone detection (C/C++) (CS: code summarization, CD:
clone detection)

Task CS CD
Metric BLEU MAP@R
RoBERTa 16.47 76.7
CodeBERT (paper) 17.65 82.7
CodeBERT (reproduce) 18.58 86.8
CodeBERT+VarGAN 19.11 87.6

-w/o MIP 18.73 87.3
-w/o GAN 18.68 86.3

GraphCodeBERT 18.78 86.7
GraphCodeBERT+VarGAN 19.15 90.2

-w/o MIP 19.01 88.4
-w/o GAN 18.80 87.6

1 We do not include VarCLR as a baseline since it is designed to encode
single variables while our approach aims to encode the entire code.

Answer to RQ3: Through adversarial training, VarGAN
enhances the performance of PLMs in downstream tasks,
due to its superb specialty in capturing code-level seman-
tics.

5 DISCUSSION

5.1 Limitations

On one hand, VarGAN adopts GAN to improve the qual-
ity of variable semantic representations, which inevitably
increases the training time. As GAN requires the generator
and the discriminator to be trained iteratively, it introduces
20% overhead compared to only training a generator. In fu-
ture work, we will explore optimization solutions to reduce
training costs. One direction is integrating adapter-based
methods. Instead of updating all the model parameters, they
selectively adjust a small portion of them, which allows
applying our VarGAN to larger models. Another direction
is to follow the latest adversarial training study to reduce
training costs and improve model accuracy.

On the other hand, as VarGAN primarily focuses on
adjusting the distribution of encoding vectors, it is limited
in its applicability solely to encoder-only PLMs. Specifically,
the absence of an encoding space in a decoder-only architec-
ture precludes the application of this approach. To address
this constraint, future research may pursue the adaptation
of VarGAN for generative models and Large Language
Models (LLMs), which would broaden its scope of potential
applications. By enabling its use in a wider range of tasks,
this extension may further enhance the versatility and utility
of VarGAN.

5.2 Road Ahead

Our method is only built and verified in encoder-only code
representation models. Hence, it remains to investigate the
adaptation to code models with other architectures, particu-
larly the decoder-only large language models. In the future,
we will design new methodologies to adapt VarGAN to
decoder-only models. For example, we can use the output
of the last Transformer block before the output layer as
the encoding vectors for each output token. An adversar-
ial training approach can be employed by introducing a
classifier to distinguish between low- and high-frequency
variables. By incorporating this additional loss, we can en-
hance the decoder-only models’ capability to produce more
accurate and contextually meaningful output, particularly
when dealing with low-frequency words.

Additionally, besides the evaluation in this paper, we
will further investigate the theoretical foundation of our
approach. This helps to verify that our method is effective as
well as sound from a theoretical perspective. We also plan
to extend VarGAN to other code-related tasks, including
code translation and alignment between code and natural
language.

6 RELATED WORK

6.1 Identifier Representation Learning

Identifiers play a pivotal place in source code and en-
capsulate important semantic information [25]. Identifier
representation learning has been a widely-studied in code
intelligent tasks, including identifier renaming [15], [39],
[18], function name prediction [1], [17], and code clone
detection [7]. Consequently, the area of identifier represen-
tation learning has gained substantial attention within the
field of software engineering [41], [3], [20].

The conventional approach to obtaining identifier repre-
sentation involves generating vectors using Word2Vec [22].
As a representative work, Chirkova et al. [4] adopt dynamic
embeddings to capture variable representations not only
from its name but also its specific role in the source code.
More recently, researchers have employed pre-trained lan-
guage models for code representation. CodeBERT [6] pio-
neers the research on PLM for code. It adapts RoBERTa [19]
to code datasets. As a follow-up work, GraphCodeBERT [10]
further abstracts code into graphs to accurately capture
dependencies and semantic structures present within the
code syntax. Regarding the importance of identifiers in
code semantics, researchers in pre-trained language models
designed identifier-related tasks as pre-training objectives,
with the aim of strengthening the model’s understanding
of identifiers and enhancing the comprehension of entire
code segments [28], [42], [2]. Our work builds upon these
previous efforts and further advances the understanding
and comprehension capabilities of identifiers. Additionally,
our work introduces adversarial learning in a unique way
to overcome the bias caused by identifier frequency.

To our best knowledge, there is only one previous
work that is closely related to ours. Chen et al. proposed
VarCLR [3], which represents the state-of-the-art approach
for learning identifier representations. VarCLR tackles the
challenges of embedding semantically similar but distant
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identifiers by leveraging contrastive learning on a parallel
identifier dataset, which yields considerable advancements
over prior methods in the IdBench benchmark. VarGAN
differs from VarCLR significantly in objectives and task
specifications. Unlike our work which encodes the entire
code, VarCLR merely encodes single identifiers. Moreover,
VarCLR is a supervised approach that depends on paral-
lel variable pairs while VarGAN is an unsupervised pre-
training objective that is independent of parallel identi-
fiers. Additionally, VarGAN tackles the imbalanced training
problem for low-frequency identifiers through adversarial
learning. Thus it is capable of finding identifiers that are
more broadly relevant.

Another critical issue that arises in the representation
of identifiers pertains to out-of-vocabulary (OOV) prob-
lems, which stem from the fact that software developers
have the freedom to create any identifiers [14]. Various
approaches have been proposed to tackle this challenge,
including anonymization of low-frequency identifiers [5],
splitting identifiers into subtokens [12], [20] and the use of
byte-pair encoding (BPE) tokenization [14], [47]. As a repre-
sentative work, Shi et al. [32] present a novel hybrid strategy
that combines identifier splitting and the BPE algorithm
to further optimize the performance of open-vocabulary
models. Diverging from prior work, our VarGAN enhances
the quality of identifier representation from a new per-
spective. It leverages adversarial networks to address the
imbalanced training of low- and high-frequency identifiers
by pre-trained language models (PLMs), and thus further
improve the performance of prior work.

6.2 Representation Learning for Low-frequency Words
The imbalanced training between low- and high-frequency
words is also a critical problem in the NLP domain, which
causes the anisotropy and uneven distribution of embed-
ding vectors by PLMs [16], [44]. Researchers have proposed
numerous methods to tackle this problem [16], [29].

One line of work [16], [36] adjusts the distribution
through vector space transformation. BERT-flow [16] em-
ploys a transformation to convert BERT-encoded sentence
representations into a more isotropic and uniform dis-
tributed space. BERT-whitening [36] proposes a whitening
operation that directly corrects the covariance matrix of local
vectors.

Another line of work enhances the training for low-
frequency words. BERTRAM [29] introduces an atten-
tion mimic mechanism to generate encoding vectors for
low-frequency words that are more consistent with high-
frequency words. FRAGE [8] improves the gap between
the distribution of low- and high-frequency words using
a GAN-based approach. DictBERT [44] incorporates an ad-
ditional dictionary to enhance the model’s understanding
of low-frequency words. FCL [45] proposes a contrastive
learning method that considers word frequency, enabling
the model to pay more attention to low-frequency words.

Our VarGAN bears a resemblance to FRAGE [8], as
both employ GAN in their architecture. However, while
FRAGE focuses on addressing the natural language word
embedding in traditional LSTMs [11], VarGAN specifically
tackles rare variables (which are more pronounced chal-
lenges) in code PLMs. Incorporating adversarial training

into code PLMs proves to be a nontrivial task due to the nu-
anced differences in pre-training pipelines compared to tra-
ditional LSTMs. Code PLMs involve multiple pre-training
objectives, which poses special challenges such as how
to seamlessly integrate adversarial training while preserv-
ing semantics during pre-training. To address these issues,
our method proposes a new pipeline and training scheme
(e.g., the semantic preservation step) that better coordinates
adversarial training with pre-training objectives. Ablation
results in the experiments also affirm that VarGAN with
the new pipeline is more effective than simply applying
adversarial training to PLMs.

To the best of our knowledge, we are the first to study the
imbalanced training of low- and high-frequency identifiers
in programming languages. We are also the first to incorpo-
rate adversarial training in pre-trained code representation
models.

7 CONCLUSION

In this paper, we study the problem of imbalanced training
of low- and high-frequency variable names within pre-
trained code representation models. We propose a novel
adversarial training strategy, VarGAN, to strengthen the
training of rare identifiers. VarGAN treats the code repre-
sentation model as a generator and introduces an additional
classifier to distinguish between low- and high-frequency
identifiers. The generator aims to generate vectors that are
difficult for the discriminator to judge identifier frequency,
thus increasing the overlap between the vector spaces of
low- and high-frequency identifiers. We verify the effective-
ness of our method in three aspects. First, the identifier
vector distribution visualization shows that our method
indeed makes the distribution more uniform. Second, the
evaluation on IdBench shows that VarGAN achieves the
highest correctness in scoring similarity and relatedness
for identifier pairs. Finally, evaluation of downstream tasks
shows that VarGAN improves code representation models
on various tasks, including code summarization and code
clone detection.

Our source code and experimental data are publicly
available at https://github.com/linyalan2000/VarGAN/.
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