
Continuous Decomposition of Granularity for Neural Paraphrase
Generation

Xiaodong Gu1, Zhaowei Zhang1, Sang-Woo Lee2, Kang Min Yoo2, Jung-Woo Ha2

1 School of Software, Shanghai Jiao Tong University
2 NAVER AI Lab

{xiaodong.gu,andy_zhangzw}@sjtu.edu.cn
{sang.woo.lee,kangmin.yoo,jungwoo.ha}@navercorp.com,

Abstract

While Transformers have had significant suc-
cess in paragraph generation, they treat sen-
tences as linear sequences of tokens and of-
ten neglect their hierarchical information. Prior
work has shown that decomposing the levels
of granularity (e.g., word, phrase, or sentence)
for input tokens has produced substantial im-
provements, suggesting the possibility of en-
hancing Transformers via more fine-grained
modeling of granularity. In this work, we pro-
pose continuous decomposition of granularity
for neural paraphrase generation (C-DNPG).
In order to efficiently incorporate granularity
into sentence encoding, C-DNPG introduces
a granularity-aware attention (GA-Attention)
mechanism which extends the multi-head self-
attention with: 1) a granularity head that auto-
matically infers the hierarchical structure of a
sentence by neurally estimating the granularity
level of each input token; and 2) two novel at-
tention masks, namely, granularity resonance
and granularity scope, to efficiently encode
granularity into attention. Experiments on two
benchmarks, including Quora question pairs
and Twitter URLs have shown that C-DNPG
outperforms baseline models by a remarkable
margin and achieves the state-of-the-art results
in terms of many metrics. Qualitative analy-
sis reveals that C-DNPG indeed captures fine-
grained levels of granularity with effectiveness.

1 Introduction

With the continued success in NLP tasks (Vaswani
et al., 2017), Transformer has been the mainstream
neural architecture for paraphrase generation (Li
et al., 2019; Kazemnejad et al., 2020; Guo et al.,
2021; Hosking et al., 2022; Goyal and Durrett,
2020). The core component of Transformer is the
self-attention network (SAN) (Vaswani et al., 2017)
which computes sentence representations at each
position by baking representations over all other
positions in a parallel way. Despite their effective-
ness, Transformer has been shown to be limited in

Text What is the reason for World War II ?
decomposition 1 What is the reason for World War II ?
decomposition 2 What is the reason for World War II ?
decomposition 3 What is the reason for World War II ?
decomposition 4 What is the reason for World War II ?
decomposition 5 What is the reason for World War II ?

⇓
Levels of granularity (marked as superscripts):

What1 is1 the2 reason3 of2 World4 War4 II5 ?

Table 1: A motivation example of multi-granularity text
decomposition. The given sentence can be decomposed
according to 5 increasing levels of granularity, each cor-
responding to a partition of the sentence into a template
(blue) at a specific level together with details (orange).
Each row with colored text denotes a level of granu-
larity where the blue words are in the sentence level
(templates) and the remaining words are in the phrase
level (details). The bottom half shows the level of gran-
ularity for each word according to the decomposition.
We use integer numbers to indicate the extent of the
granularity: the greater the number, the more detailed
the word is.

structure modeling, that is, they process disperse
words in a flat and uniform way without explicit
modeling of the hierarchical structures (Raganato
and Tiedemann, 2018; Hao et al., 2019; Li et al.,
2020).

One potential route towards addressing this is-
sues is multi-granularity text modeling (illustrated
in Table 1) – which decomposes texts into multi-
ple levels of granularity such as words, phrase and
sentence (Li et al., 2019; Wiseman et al., 2018;
Hao et al., 2019). For example, Li et al. (2019)
attempts to achieve this via decomposable neu-
ral paraphrase generator (DNPG). DNPG decom-
poses paraphrase generation by Transformers into
two levels of granularity: phrase-level (details)
and sentence-level (templates). This allows a more
flexible and controllable generating process. Para-
phrases can be generated through rephrasing the
templates while copying the detailed phrases. The



decomposition is realized using a granularity sepa-
rator, multiple encoder-decoder pairs, and an aggre-
gator that summarizes results from all granularity
levels.

Despite showing promising results, DNPG only
captures a discrete (coarser-grained) decomposi-
tion of granularity, which restricts the capacity in
representing more fine-grained semantic hierarchy.
Furthermore, DNPG models the different levels of
granularity using multiple encoders and decoders.
That amounts to training multiple Transformers.
The computational cost increases greatly as the
number of granularity levels grows.

In this paper, we present C-DNPG (stands for
continuous decomposition of granularity for para-
phrase generation), a simple, fine-grained, and
seamlessly integrated model for granularity-aware
paragraph representation. C-DNPG extends the
vanilla attention network with a granularity head,
which neurally estimates a continuous level of gran-
ularity for each token. In order to efficiently encode
granularity into Transformers, C-DNPG adjusts the
original self-attention weights using two novel at-
tention masks: 1) a granularity-resonance mask
which encourages attentions to exist between to-
kens with similar granularity; and 2) a granularity
scope mask which encourages a small attention
scope for lower-level (words or phrases) tokens.
The granularity-aware attention mechanism pro-
vides a continuous modeling of sentence granular-
ity and can be seamlessly integrated into the vanilla
Transformer as the basic processing cell.

We evaluate the proposed C-DNPG on two
commonly-used benchmarks, including the Quora
question pairs and Twitter URL paraphrasing. Ex-
perimental results show that C-DNPG remarkably
outperforms baseline models on both benchmarks
and achieve the state-of-the-art results in many met-
rics. Qualitative study confirms the ability of the
proposed approach in modeling fine-grained granu-
larity.

Our contributions can be summarized as follows:

• We present a novel granularity-aware atten-
tion mechanism which supports a fine-grained
decomposition of granularity for input tokens
and hence yields a continuous modeling of
granularity for natural language sentences.

• The proposed granularity-aware attention net-
work can be seamlessly integrated into the
Transformer for granularity-aware paraphrase
generation.

• We conduct extensive evaluations of
our methods on two popular paraphrase
generation benchmarks and show that
C-DNPG remarkably outperforms previous
works in terms of quantitative and qualita-
tive results. We release all data and code at
https://github.com/guxd/C-DNPG.

2 Background

Our approach is extended based on the Transformer
and self-attention networks. We begin by introduc-
ing the background of these techniques.

2.1 Self-Attention Networks
The attention mechanism is a function which maps
a query vector to a set of key-value vector pairs and
summarizes an output vector as a weighted sum
of the value vectors. The weight assigned to each
value is computed using the query and key vectors.
A typical attention function, for example, is the
scaled dot-product attention (Vaswani et al., 2017):

Attention(Q,K,V) = ATV,

A = softmax(QKT /
√
dk)

(1)

where Q, K, V∈ RL×d represent the query, key
and value vectors, respectively. A ∈ [0, 1]L×L is
the attention score matrix with each Aij = qT

i kj ;
dk denotes the dimension size of the key vector.

In particular, the self-attention network (SAN) is
a special attention mechanism that computes the at-
tention function over a single sequence. For a given
sequence represented as a list of hidden states H
= [h1, . . . ,hN ]∈ RN×d, the self-attention network
computes representations of the sequence by relat-
ing hidden states at different positions (Vaswani
et al., 2017):

Q, K,V = WQH,WKH,WV H

SelfAttn(H) = Attention(Q,K,V)
(2)

where Wq, Wk, and Wv are parameters to trans-
form the input representation H to the query, key,
and value respectively. Self-attention produces an
abstraction and summary of a sequence in the
hidden space and outputs the transformed hidden
states (Vaswani et al., 2017).

2.2 Transformer
Transformer is an encoder-decoder model that is
built upon the self-attention networks. It has been



the common architectural choice for modeling para-
phrase generation (Li et al., 2019; Guo et al., 2021;
Kazemnejad et al., 2020). Transformer encodes a
source sequence into hidden vectors and then gener-
ates a target sequence conditioned on the encoded
vectors. Both the encoder and the decoder are com-
posed of a stack of N identical layers, with each
consists of a multi-head self-attention network fol-
lowed by a position-wise fully connected network.
Formally, the procedure of learning sequence repre-
sentations through Transformer can be formulated
as follows:[

H̄l = LN(SelfAttn(Hl−1) +Hl−1)
Hl = LN(FFNl(H̄l) + H̄l)

]
L

(3)

where SelfAttn(.) denotes the multi-head self-
attention network which performs the attention
function over Hl−1, the output hidden states of the
l-1st layer; FFN and LN stand for the position-wise
fully connected layer and the layer normalization,
respectively; [...]L denotes the stack of L layers.
The output of the final layer HL is returned as the
representation of the input sentence.

3 Approach

The vanilla Transformer processes disperse words
in a flat and uniform way, which makes it difficult
to represent words in terms of their syntactic guid-
ance (Li et al., 2020). Prior work has shown that de-
composing the levels of granularity (phrases or tem-
plates) has produced substantial gains in paraphrase
generation (Li et al., 2019), suggesting the possi-
bility of further improvement from finer-grained
modeling of granularity (Hao et al., 2019).

Motivated by the benefit of explicitly denot-
ing word granularity, we propose GA-attention,
a new self-attention block which automatically
decomposes fine-grained granularity and learns
granularity-aware sentence representations. We in-
tegrate GA-attention into the vanilla Transformer
to generate granularity-aware paraphrases.

3.1 Granularity-Aware Self-Attention

Unlike DNPG, which classifies each word into ei-
ther phrase or sentence levels (Li et al., 2019),
C-DNPG aims to assign a soft classification of
granularity for each word, yielding finer-grained
decomposition of granularity for a sentence. For
this purpose, we extend the vanilla self-attention
with 1) a granularity head which estimates a con-
tinuous granularity level for each token, and 2) two

new attention masks which bake the granularity
into attentions for learning granularity-aware sen-
tence representations. The overall architecture is
illustrated in Figure 1a.
Granularity Head For a sequence of input tokens
that is encoded as hidden states H = [h1, . . . ,hN ],
the granularity head estimates a continuous gran-
ularity vector z = [z1, . . . , zN ] ∈ [0, 1]N , where
zi ∈ [0, 1] measures the extent of token i belong-
ing to details: a zi that is close to 1 indicates that
the token at position i tends to be a detailed word
(i.e., in the phrase level), while a zi approaching 0
indicates that token i tends to be a template word
(i.e., in the sentence level). Specifically in the self-
attention networks, the granularity for hidden states
in layer l can be estimated as:

zl = sigmoid(WGHl−1), l = 2, ..., L (4)

where WG represents the training parameters;
Hl−1 denotes the hidden states of layer l-1.

Having estimated the granularity for input to-
kens, we want to effectively incorporate the gran-
ularity into attentions to control the learning of
sentence representations. To this end, we propose
two new attention masks, namely, the granularity
resonance mask and the granularity scope mask,
Our idea is to adjust the original attention weights
using the two proposed masks.
Granularity Resonance Mask We first introduce
the granularity resonance mask where “resonance”
is analogy to an assumption of token correlations:
sentence-level tokens attend more to sentence-level
tokens, whereas phrase-level tokens attend more to
phrase-level tokens (Li et al., 2019). In this sense,
the term granularity resonance refers to the corre-
lation between two tokens in terms of their levels
of granularity.

Let zi and zj denote the granularity of tokens i
and j respectively. In the binary case where zi ∈
{0, 1}, their correlation in terms of granularity can
be formulated as:

Cij =

{
1, if zi = zj

0, otherwise
(5)

where Cij represents the regularization coefficient
to the original attention weight Aij in terms of
granularity correlation. Such a discrete measure of
resonance is limited in modeling token correlation
as both zi and Cij are binary variables. To improve
the capacity of the granularity-aware attention, we



generalize the computation of Cij (Equation 5) to
a continuous function, that is,

Cij =(1− zi)× max(0, 1− (zi + zj))

+ zi × min(1, 1− zi + zj)
(6)

where zi ∈ [0, 1] is a continuous value; zi and 1-zi
control the extent of token i being in the word level
or the sentence level, respectively. Equation 6 pro-
vides a smooth measure of the correlation between
token i and j.
Granularity Scope Mask We further define the
granularity scope mask where granularity scope
measures the scope of attention according to the
granularity level. This is based on the local at-
tention assumption of phrases (Li et al., 2019): a
phrase-level token tends to attend to surrounding
tokens while a sentence-level token can attend to
other tokens evenly with any distance. In that sense,
phrasal tokens (with a large zi) have a relatively
smaller attention scope compared to sentence-level
words (with a small zi). For a given sequence of
hidden states h1, . . . ,hN with N words, the gran-
ularity scope for position i attending to position j
can be defined as:

Sij =

{
1 if |i− j| < (N − ϵ)(1−zi) + ϵ

0 otherwise
(7)

where Sij ∈ {0, 1} denotes the penalty for the
original attention weight Aij in terms of granular-
ity scope. ϵ denotes the maximum distance that a
phrasal word attends to. We set ϵ to 2 according to a
similar configuration in (Li et al., 2019). This equa-
tion can be intuitively interpreted as the receptive
fields for different levels of granularity (Li et al.,
2019): a phrase-level token i (zi=1) attends only
to the adjacent n (n=3) words, whereas a sentence-
level token i (zi=0) can attend to positions with any
distances.

Similarly, we generalize Equation 7 to a continu-
ous function:

Sij = max(0,min(1, (N − ϵ)(1−zi) + ϵ− |i− j|))
(8)

Using the two granularity-based attention masks,
we derive the granularity-aware self-attention as
an adjustment of the original attention weights,
namely,

GASelfAttn(H) = ÃTV

Ã = A⊙C⊙ S
(9)

where A and Ã denote the original and adjusted
attention weights respectively; ⊙ stands for the
element-wise multiplication; GASelfAttn(.) repre-
sents the proposed granularity-aware self-attention
function.

3.2 C-DNPG: Transformer with Granularity
Aware Attention

Based on the proposed GA-Attention, we pro-
pose C-DNPG, which integrates GA-attention into
Transformer in order to better generate paraphrases
at fine-grained levels of granularity. Figure 1b illus-
trates the overall architecture of our model. Com-
pared to the vanilla Transformer, C-DNPG sim-
ply replaces the self-attention layers in both the
encoder and the decoder with the proposed GA-
attention network. Similar to the vanilla Trans-
former, we perform the GA-attention function for
multiple heads in parallel and concatenate the multi-
head representations to yield the final representa-
tion. The procedure for the C-DNPG (Transformer
with GA-Attention) can be summarized as:[

H̄l = LN(GASelfAttn(Hl−1) +Hl−1)

Hl = LN(FFNl(H̄l) + H̄l)

]
L
(10)

where LN denotes layer normalization (Ba et al.,
2016).

4 Experiments

We evaluate our approach by experimenting on two
widely used datasets, including the Quora ques-
tion pairs and the Twitter URLs. We will introduce
the common experimental setup and the empirical
results.
Implementation Details We implemented our ap-
proach on top of the Huggingface PyTorch Trans-
former (Wolf et al., 2019). For a fair comparison,
we followed the hyperparameter settings in related
works (Li et al., 2019) for the Transformer. Both
encoder and decoder consist of 3 transformer lay-
ers, have a hidden size of 450, and contain 9 atten-
tion heads (L=3, H=450, A=9). Following previous
work (Li et al., 2019; Kazemnejad et al., 2020), we
truncate sentences to 20 tokens. We utilize the pre-
trained tokenizer by huggingface1 (i.e., bert-base-
uncased) for tokenization which has been common
in NLP. During decoding, we employ beam search
with a beam size of 8. All models were optimized
with AdamW (Loshchilov and Hutter, 2018). The

1https://github.com/huggingface/tokenizers
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(b) Architecture of C-DNPG which seamlessly replaces the
multi-head attention with our multi-head GA-attention. Red
arrows denote additional z flows in GA-attention.

Figure 1: The architectures of GA-Attention and C-DNPG.

learning rate was varied under a linear schedule
with warmup steps of 5,000 and the maximum
learning rate of 5e−5. The model was training for
100,000 batches until achieving the best validation
loss. The experiments were repeated for 5 times
and were reported with their average results. All
models were trained on a machine with NVIDIA
Tesla V100 GPU allocated with a batch size of 32
samples.

Baseline Models We compare our approach with
popular paraphrase generation methods including:
(i) RedidualLSTM (Prakash et al., 2016): an LSTM
sequence-to-sequence model using residuals be-
tween RNN layers; (ii) PointerGenerator (See et al.,
2017): an RNN sequence-to-sequence model using
copy mechanism; (iii) Transformer (Vaswani et al.,
2017): the vanilla Transformer model; (iv) Trans-
former+Copy: an enhanced Transformer with copy
mechanism (Gu et al., 2016); and (v) DNPG (Li
et al., 2019): a popular paraphrase generation
model based on Transformer. DNPG extends Trans-
former by generating paraphrases at multiple levels
of granularity such as the phrase level and the sen-
tence level. The model is composed of two encoder-
decoder pairs, which correspond to phrase-level
and sentence-level paraphrasing, respectively. We
use the default settings of the baseline models as

reported in their papers. (vi) FSET (Kazemnejad
et al., 2020): the state-of-the-art paraphrase genera-
tion model that retrieves a paraphrase pair similar
to the input sentence from a pre-defined index, then
editing it using the extracted relations between the
retrieved pair of sentences. We directly report the
performance from their original paper.
Evaluation Metrics We perform automatic evalua-
tion using five widely used metrics for text genera-
tion tasks, namely, BLEU (Papineni et al., 2002),
iBLEU (Sun and Zhou, 2012), ROUGE-L (Lin,
2004) and METEOR (Lavie and Agarwal, 2007).
We compute both BLEU-2 and BLEU-4 scores
in our experiments using the NLTK package2.
iBLEU (Sun and Zhou, 2012) penalizes BLEU by
n-gram similarity between output and input. Hence,
it is taken as the main metric for paraphrasing.
Datasets We conducted the experiments on two
widely used benchmarks: 1) the Quora question
pairs benchmark3, which contains 124K duplicate
question pairs. The dataset was labeled by human
annotators and has been widely used for paraphrase
research (Li et al., 2019; Devlin et al., 2019). We
split the original data into train, validation, and test
sets with proportions of 100K, 4K, and 20K, re-

2https://www.nltk.org/_modules/nltk/translate/bleu_score.html
3https://www.kaggle.com/c/quora-question-pairs (NC)



Quora Twitter URL
Model iBLEU BLEU-2 BLEU-4 ROUGE-L METEOR iBLEU BLEU-2 BLEU-4 ROUGE-L METEOR
ResidualLSTM 20.45 40.71 26.20 36.19 32.67 20.29 36.75 25.92 32.47 29.44
Pointer-generator 22.65 43.82 28.80 42.36 40.87 25.60 44.50 32.40 38.48 36.48
Transformer 21.14 37.97 26.88 40.14 38.21 24.44 44.45 31.12 31.97 32.49
Transformer+Copy 22.90 44.42 28.94 37.60 38.34 27.07 48.44 34.35 38.37 38.19
DNPG 24.55 47.72 31.01 42.37 42.12 25.92 46.36 32.91 36.77 36.28
FSET - 51.03 33.46 - 38.57 - 46.35 34.62 - 31.67
C-DNPG (R) 26.94 47.58 34.05 46.17 44.75 27.96 49.98 35.80 38.67 39.39
C-DNPG (S) 26.68 47.48 33.93 46.22 46.66 28.19 49.10 35.95 38.89 39.06
C-DNPG (R⊙S) 25.96 46.25 33.02 44.64 44.25 30.25 49.00 38.58 41.60 41.71
C-DNPG (R+S) 26.66 50.96 33.69 44.45 43.33 28.73 50.49 36.61 39.80 40.42

Table 2: Results of paraphrase generation on two benchmarks. R stands for the resonance mask while S stands for
the scope mask; R×S stands for the combination of two masks through element-wise multiplication; R+S means
we average the two masks for adjusting the original attention weights. We note that the results of baseline models
are stronger than those reported in the DNPG paper, probably due to the BERT tokenizer we have utilized in our
experiments. The pointer-generator outperforms the vanilla Transformer, as is consistent to the DNPG paper.

spectively.
2) the Twitter URL paraphrasing dataset4 is also a
widely used benchmark for evaluating paraphrase
generation (Li et al., 2018; Kazemnejad et al.,
2020). The dataset contains two subsets which are
manually and automatically labeled, respectively.
Following (Li et al., 2018), we sample 110k in-
stances from the automatically labeled subset as
our training set and sample 5k and 1k instances
from the manually annotated subset for the test and
validation sets, respectively.

5 Results and Analysis

5.1 Automatic Evaluation
Table 2 shows the results of various approaches
on the two benchmarks. As the results indicate,
C-DNPG (with variants) achieves the best perfor-
mance in terms of most automatic metrics, which
suggests that our C-DNPG is effective in perform-
ing multi-granularity paraphrasing.

In particular, our approach outperforms DNPG,
a multi-granularity Transformer based model with
a significant margin. That means that by model-
ing more fine-grained granularity levels, C-DNPG
can control the generating process more precisely.
Thanks to the granularity attention mechanisms, it
is more flexible for the model to leverage syntactic
guidance (e.g., recognizing templates and details)
for paraphrase generation.

It is interesting to note that either the reso-
nance mask or the scope mask that we propose
can achieve the best performance under specific
settings. We hypothesize that there could be over-
lap between the two proposed attention masks in

4https://github.com/lanwuwei/Twitter-URL-Corpus

some cases. Therefore, combining them may am-
plify the extent of masking and hinder the ultimate
performance. We also find that Transformer with
a copy mechanism can outperform DNPG on the
Twitter dataset. This might be due to the more noise
in this dataset, which leads copy based models to
be more effective.

Layer 3

Layer 2

Layer 1

DNPG

Layer 3

Layer 2

Layer 1

DNPG

Layer 3

Layer 2

Layer 1

DNPG

Figure 2: Examples of multi-granularity extracted by
C-DNPG (Layer1-3) and DNPG (bottom) on the Quora
dataset. Warmer colors represent higher levels of gran-
ularity (templates) while colder colors represent lower
levels of granularity (details). We present granularity
of all Transformer layers and compare the results with
those of DNPG.

5.2 Qualitative Analysis

To gain a more in-depth insight into the perfor-
mance, we qualitatively analyze the interpretability
of GA-attention. We visualize the output of the
granularity head in each attention layer to verify
how effectively GA-attention captures fine-grained
granularity. As shown in Figure 2, GA-attention
can successfully capture continuous linguistic struc-
tures reflected as multiple levels of granularity (in



Sentence: What is a good first programming language?
Transformer: What is good?

DNPG: What is good for coding?
C-DNPG: What are the best programming languages for beginners?

Human: Whats a good and easy programming language to learn?

Sentence: What will the year 2100 be like?
Transformer: What is likely to happen in the world?

DNPG: What are did today. year - year of unique year of country?
C-DNPG: What will the world look like in 2100?

Human: What will the year 2099 be like?

Table 3: Sample paraphrases from multiple models with human reference.

the last layer). For example, it successfully yields
four levels of templates: 1) what , 2) what is

, and 3) what is the expected 4) what is the
expected cut off of according to Example 1 in
Figure 2. In contrast, DNPG can decompose only
two levels of granularity for each sentence. This
means that C-DNPG can successfully distinguish
templates and detailed words for each sentence,
thus generating more fine-grained paraphrases.

Another interesting observation is that the con-
tinuous granularity is not extracted at once, in-
stead, it is gradually summarized through trans-
former layers. This indicates that the proposed
granularity-aware extensions blend naturally with
attention networks in learning coarse-to-fine repre-
sentations (Jawahar et al., 2019).

Overall, the results suggest that the proposed
GA-attention naturally extends vanilla attention
networks and enhances text representations with
fine-grained granularity modeling.

5.3 Case Study

Table 3 presents two sample paraphrases gener-
ated by different models in the Quora test set. As
the samples indicate, C-DNPG generates more co-
herent and fluent paraphrases than other models,
which is consistent with the results of the auto-
matic and human evaluation. According to the
first sample, C-DNPG produces a more relevant
and human-like paraphrase. For example, C-DNPG
successfully paraphrases the word “first” as “be-
ginners”. The second sample shows more clear
strength of C-DNPG which generates a paraphrase
that is even better than the ground-truth question
asked by human (e.g., the year “2100” is mistak-
enly paraphrased as “2099”).

5.4 Human Evaluation

Besides the automatic evaluation, we also perform
a human study to assess the performance of our
approach qualitatively. We compare our approach
with two typical methods, namely DNPG (Li et al.,
2019) and the vanilla Transformer (Vaswani et al.,
2017). They represent the state-of-the-art decompo-
sition based method and the backbone model that
our model is built upon, respectively. We randomly
selected 200 Quora questions from the test set. For
each one of the questions, one paraphrase was gen-
erated for each model. Then, three annotators from
the Amazon Mechanical Turk were asked to com-
pare the generated paraphrases by two models (ours
vs. a baseline model) blindly based on two criteria,
relevance and fluency. Relevance means that the
generated paraphrases are semantically equivalent
to the original question. Fluency means the gener-
ated paraphrases are natural and fluent sentences.
Table 4 presents the comparison results. As can be
seen, our model significantly outperforms the other
two methods in terms of the two criteria. Moreover,
the Fleiss’ kappa κ shows fair agreement between
annotators.

5.5 Computational Efficiency

As one of the key advantages of C-DNPG, we fi-
nally evaluate the time efficiency of our approach.
We used the same setup as described in the Setup
section. As Table 5 shows, the granularity aware
attention mechanism in C-DNPG does not bring
much additional computational cost to Transform-
ers as opposed to the DNPG baseline approach,
which indicates that GA-attention is lightweight to
be integrated into Transformers.



Comparison Relevance Fluency
Win Tie Loss Kappa Win Tie Loss Kappa

Ours vs. Transformer 67.8% 14.3% 17.8% 0.156 67.5% 15.8% 16.7% 0.166
Ours vs. DNPG 72.3% 12.8% 14.8% 0.171 68.1% 17.5% 14.3% 0.194
Ours vs. Human 43.7% 10.5% 45.8% 0.079 43.2% 11.0% 45.8% 0.095

Table 4: Human evaluation on the test set of Quora.

Model Time (hours)

Transformer 1.2
TransformerCopy 1.2
DNPG 3.6
C-DNPG (ours) 1.5

Table 5: Training time (until model convergence) of
various approaches on the Quora dataset.

6 Discussion

6.1 Why baking the two masks can enhance
the performance?

Our idea is a generalization of the previous work
DNPG (Li et al., 2019). In that paper, decompos-
ing sentences into templates and details can im-
prove the performance of paraphrasing because
paraphrasing is usually generated by rewriting the
sentence template while directly copying the de-
tailed words. In that sense, template words pay
more attention to template words while detailed
words tend to pay attention to detailed words. Our
paper generalizes this idea by extending the binary
level (either 0 or 1) of granularity to a continuous
range (between 0 and 1) of levels. This was imple-
mented by the two proposed masks.

7 Related Work

This work is closely related to (1) multi-granularity
paraphrase generation and (2) multi-granularity at-
tention.
Multi-Granularity Paraphrase Generation.

There has been an increasing interest in decom-
posing paraphrase generation into multiple levels of
granularity such as word, phrase and sentence (Li
et al., 2019; Wiseman et al., 2018; Hao et al.,
2019). For example, (Li et al., 2019) present the de-
composable neural paraphrase generator (DNPG).
DNPG is a Transformer-based model that gener-
ates paraphrases at two levels of granularity in a
disentangled way. The model is composed of two

encoder-decoder pairs, corresponding to phrase-
level and sentence-level, respectively. The differ-
ence between our C-DNPG and DNPG is of three-
fold: 1) C-DNPG estimates a continuous granular-
ity level of each token and hence supports a contin-
uous modeling of hierarchical structures; 2) Com-
pared to DNPG, the GA-attention in C-DNPG can
be naturally and seamlessly integrated into Trans-
former and is light-weighted in computation; and
3) While DNPG predicts granularity using a single
fully connected layer, C-DNPG gradually summa-
rizes granularity through a stack of Transformer
layers.

Multi-Granularity Attention.

Another important line of work relates to multi-
granularity self-attention. (Hao et al., 2019) pro-
posed multi-granularity self-attention (MG-SA):
MG-SA combines multi-head self-attention and
phrase modeling by trains attention heads to attend
to phrases in either n-gram or syntactic formalism.
(Nguyen et al., 2020) proposed a tree-structured at-
tention network which encodes parse tree structures
into self-attention at constant time complexity. De-
spite similar names, our method differs from theirs
greatly in principle and architecture. These two
works rely on the existence of parsing trees, as op-
posed to GA-attention which infers latent structures
from plain text. Furthermore, MG-SA only consid-
ers two-levels of granularity while GA-attention
aims at continuous modeling of multiple granu-
larity. (Liu et al., 2020) proposed a hybrid neural
architecture named MahNN which integrates RNN
and ConvNet, each learning a different aspect of
semantic from the linguistic structures. Like other
related works, MahNN is based on a coarse-grained
attention mechanism. The two levels of granular-
ity it processes are represented by RNN and Con-
vNet, respectively. By contrast, GA-attention pro-
vides a fine-grained attention function extended
from the vanilla attention mechanism. Therefore,
GA-attention is a pure attention-based approach
and can be naturally and seamlessly integrated into



Transformers.

8 Conclusion

In this paper, we have proposed a novel paraphrase
generation model named C-DNPG for continuously
decomposing sentences at different levels of gran-
ularity. C-DNPG extends the multi-head attention
with a granularity head which neurally estimates
continuous granularity level of each input token. To
efficiently incorporate granularity into attentions,
we propose two novel attention masks, namely,
granularity-resonance mask and granularity-scope
mask, to adjust the original attention weights. Re-
sults on two paraphrase generation benchmarks
show that C-DNPG remarkably outperforms base-
line models in both quantitative and qualitative
studies. In future work, we will investigate the ef-
fect of C-DNPG in pre-trained models and other
NLP tasks.
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